Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kyotorphin (KTP), first isolated in the bovine brain and now having been identified in a variety of species, is known most extensively for its analgesic-like properties. KTP indirectly stimulates opioid receptors by releasing methionine enkephalin (met-enkephalin). Stimulation of opioid receptors is linked to hunger perception. In the present study, we sought to elucidate the effect of KTP on food intake in the neonatal chick. Intracerebroventricular injection of 0.6, 3.0 and 12 nmol KTP increased feeding up to 60 min post-injection. KTP treated chicks increased pecking efficiency and decreased time spent in deep rest, 20 and 30 min following injection, respectively. Gastrointestinal transit rate was not affected by KTP. Blocking mu, delta, and kappa opioid receptors suppressed orexigenic effects of KTP, suggesting that all three types are involved in KTP's stimulatory effect. The lateral hypothalamus (LH) and arcuate nucleus (ARC) of the hypothalamus and the nucleus of the solitary tract (NTS), within the brainstem had increased numbers of c-Fos immunoreactive cells following KTP treatment. In conclusion, KTP caused increased feeding in broiler-type chicks, likely through activation of the LH, ARC, and NTS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2012.10.007DOI Listing

Publication Analysis

Top Keywords

opioid receptors
16
ktp
9
increased feeding
8
orexigenic kyotorphin
4
kyotorphin chicks
4
chicks involves
4
involves hypothalamus
4
hypothalamus brainstem
4
brainstem activity
4
opioid
4

Similar Publications

The μ-opioid receptor (μOR) is the primary drug target of opioid analgesics such as morphine and fentanyl. Activation of μORs in the central nervous system inhibits ascending pain signaling to the cortex, thereby producing analgesic effects. However, the clinical use of opioid analgesics is severely limited by adverse side effects, including respiratory depression, constipation, addiction, and the development of tolerance.

View Article and Find Full Text PDF

Background: Opioids are highly effective for pain management but carry risks. Naloxone quickly reverses opioid overdoses by blocking opioid receptors in the brain. Despite its effectiveness, naloxone remains underutilized.

View Article and Find Full Text PDF

The legalization of cannabis for industrial and medicinal purposes has significantly expanded worldwide. This study delves into the analgesic potential toxicity study of chloroformic extract from the Moroccan L. () cultivar, Khardala (KH extract).

View Article and Find Full Text PDF

mGlu2 Receptors in the Basal Ganglia: A New Frontier in Addiction Therapy.

Front Biosci (Landmark Ed)

August 2025

Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.

Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.

View Article and Find Full Text PDF

Opioid analgesics are commonly prescribed to mitigate pathological pain. In addition to its analgesic effect, this pharmaceutical treatment program is well-known for its ability to induce adverse effects, including opioid-induced hyperalgesia (OIH) and analgesic tolerance. Thus, novel effective therapeutic strategies are urgently needed to improve opioid analgesia while mitigating side effects to ensure patient safety.

View Article and Find Full Text PDF