98%
921
2 minutes
20
Neuronal growth cones are the most sensitive among eukaryotic cells in responding to directional chemical cues. Although a dynamic microtubule cytoskeleton has been shown to be essential for growth-cone turning, the precise nature of coupling of the spatial cue with microtubule polarization is less understood. Here we present a computational model of microtubule polarization in a turning neuronal growth cone. We explore the limits of directional cues in modifying the spatial polarization of microtubules by testing the role of microtubule dynamics, gradients of regulators, and retrograde forces along filopodia. We analyze the steady state and transition behavior of microtubules on being presented with a directional stimulus. Our model makes novel, to our knowledge, predictions about the minimal angular spread of the chemical signal at the growth cone and the fastest polarization times. A regulatory reaction-diffusion network based on the cyclic phosphorylation-dephosphorylation of a regulator predicts that the receptor-signal magnitude can generate the maximal polarization of microtubules and not feedback loops or amplifications in the network. Using both the phenomenological and network models, we have demonstrated some of the physical limits within which the microtubule polarization system works in turning the neuron.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3525850 | PMC |
http://dx.doi.org/10.1016/j.bpj.2012.10.021 | DOI Listing |
J Am Soc Nephrol
September 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.
Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.
Adv Sci (Weinh)
September 2025
Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
T-2 toxin, a mycotoxin that frequently causes hidden contamination in food and animal feed, poses a substantial threat to both human and animal health. Staphylococcus saprophyticus (S. saprophyticus) is an opportunistic pathogen that widely infects humans and various animals.
View Article and Find Full Text PDFThe microtubule cytoskeleton is comprised of dynamic, polarized filaments that facilitate transport within the cell. Polarized microtubule arrays are key to facilitating cargo transport in long cells such as neurons. Microtubules also undergo dynamic instability, where the plus and minus ends of the filaments switch between growth and shrinking phases, leading to frequent microtubule turnover.
View Article and Find Full Text PDFNeurochem Res
September 2025
Área Toxicología. Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina.
Neuronal polarization and axon growth are critical processes underlying neuronal differentiation and maturation. Wnt proteins have been implicated as key regulators of neuronal development; however, the cellular mechanisms through which they influence axon growth remain poorly understood. In this study, we investigated the role of Wnt7b in axon differentiation and elongation in hippocampal neurons, and aimed to characterize the underlying molecular mechanisms involved.
View Article and Find Full Text PDFJ Cell Sci
September 2025
Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
Xenopus egg extracts can self-organize into cell-like compartments without the classic microtubule organizer centrosome. Compartment formation requires microtubules, but the organization of microtubules throughout the process remains unclear. Here, we show that the earliest organized microtubule structures to emerge during cell-like compartment formation are centrosome-independent asters.
View Article and Find Full Text PDF