98%
921
2 minutes
20
The dynamics of iron tetracarbonyl olefin complexes has been investigated using two-dimensional infrared (2D-IR) spectroscopy. Cross peaks between all CO-stretching bands show that the CO-stretch modes are coupled, and from the cross-peak anisotropies we can confirm previous assignments of the absorption bands. From the pump-probe delay dependence of the diagonal peaks in the 2D-IR spectrum we obtain a correlation time of ∼3 ps for the spectral fluctuations of the CO-stretch modes. We observe a multi-exponential pump-probe delay dependence of the cross-peak intensities, with rate constants ranging from 0.1 ps(-1) to 0.6 ps(-1). To determine whether this delay dependence originates from fluxionality of the complex or from intramolecular vibrational relaxation (IVR), we modulate the free-energy barrier of fluxional rearrangement by varying the pi-backbonding capacities of the olefin ligand in two iron tetracarbonyl olefin complexes: Fe(CO)(4)(cinnamic acid) and Fe(CO)(4)(dimethyl fumarate). Since the pi-backbonding strongly influences the rate of fluxionality, comparing the dynamics in the two complexes allows us to determine to what extent the observed dynamics is caused by fluxionality. We conclude that on the time scale of our experiments (up to 100 ps) the cross-peak dynamics in the iron complexes is determined by intramolecular vibrational energy relaxation. Hence, in contrast to previously investigated irontricarbonyl and ironpentacarbonyl complexes, iron tetracarbonyl olefin complexes exhibit no fluxionality on the picosecond time scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp43565a | DOI Listing |
Chemistry
May 2025
TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München, Lichtenbergstr. 4, 85748, Garching bei München, Germany.
We report on the utilization of the ethylene-bridged bis[(dialkylamino)cyclopropenimine] (bisCPI) ligand, L, to give access to new main-group E(II) halide complexes (E = Ge, Sn, Pb; 1, 2, 3). Subsequent reduction with Collman's reagent (NaFe(CO) • dioxane) enables the isolation of a series of zero-valent tetrylone-tetracarbonyl iron complexes, (L)E(Fe(CO) (E = Ge (4), Sn (5), Pb (6)). Compounds 4 - 6 were reacted further with iron pentacarbonyl to yield the bis-tetracarbonyl iron complexes (L)E[(Fe(CO)] (E = Ge (7), Sn (8), Pb (9)).
View Article and Find Full Text PDFDalton Trans
January 2025
Institut für Anorganische Chemie, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
Dalton Trans
November 2024
Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA.
The structures and energetics of the binuclear methylphosphinidene complexes of cyclopentadienylruthenium carbonyls of the type [MePRu(CO)Cp] ( = 4, 3, 2, 1) have been investigated for comparison with their previously studied iron analogues. For the tetracarbonyls and tricarbonyls [MePM(CO)Cp] ( = 4, 3) substituting ruthenium for iron has relatively little effect on the energetically preferred structures. Thus such structures have two-electron donor bridging MeP groups with no metal-metal bond for the tetracarbonyls and a metal-metal single bond for the tricarbonyls.
View Article and Find Full Text PDFNat Chem
December 2024
TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany.
Nitriles (R-C≡N) have been investigated since the late eighteenth century and are ubiquitous encounters in organic and inorganic syntheses. In contrast, heavier nitriles, which contain the heavier analogues of carbon and nitrogen, are sparsely investigated species. Here we report the synthesis and isolation of a phosphino-silylene featuring an N-heterocyclic carbene-phosphinidene and a highly sterically demanding silyl group as substituents.
View Article and Find Full Text PDFBeilstein J Nanotechnol
July 2024
J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
We probe the separation of ligands from iron tetracarbonyl methyl acrylate (Fe(CO)(CHO) or Fe(CO)MA) induced by the interaction with free electrons. The motivation comes from the possible use of this molecule as a nanofabrication precursor and from the corresponding need to understand its elementary reactions fundamental to the electron-induced deposition. We utilize two complementary electron collision setups and support the interpretation of data by quantum chemical calculations.
View Article and Find Full Text PDF