Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, considerable effort has been put into developing fast algorithms to reconstruct a rooted phylogenetic network that explains two rooted phylogenetic trees and has a minimum number of hybridization vertices. With the standard app1235roach to tackle this problem being combinatorial, the reconstructed network is rarely unique. From a biological point of view, it is therefore of importance to not only compute one network, but all possible networks. In this article, we make a first step toward approaching this goal by presenting the first algorithm--called ALLMAAFs--that calculates all maximum-acyclic-agreement forests for two rooted binary phylogenetic trees on the same set of taxa.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2012.0192DOI Listing

Publication Analysis

Top Keywords

phylogenetic trees
12
rooted binary
8
binary phylogenetic
8
rooted phylogenetic
8
step computing
4
computing hybridization
4
hybridization networks
4
rooted
4
networks rooted
4
phylogenetic
4

Similar Publications

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

ANASFV: a workflow for African swine fever virus whole-genome analysis.

Microb Genom

September 2025

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, PR China.

African swine fever virus (ASFV) is highly transmissible and can cause up to 100% mortality in pigs. The virus has spread across most regions of Asia and Europe, resulting in the deaths of millions of pigs. A deep understanding of the genetic diversity and evolutionary dynamics of ASFV is necessary to effectively manage outbreaks.

View Article and Find Full Text PDF

Genomic and morphological characterization of a novel iridovirus, bivalve iridovirus 1 (BiIV1), infecting the common cockle ().

Microb Genom

September 2025

International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.

High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.

View Article and Find Full Text PDF

Background And Aims: Crop wild relatives (CWRs) are key resources for enhancing agricultural resilience, providing genetic traits that can improve pest resistance, abiotic stress tolerance, and nutritional composition in domesticated crops. Within the mustard family (Brassicaceae) this is especially significant in the Brassiceae tribe, which includes economically important genera for agriculture such as Brassica and Sinapis. However, while breeding programmes have historically focused on major crops within this tribe, the potential of their wild relatives, particularly for underutilised and minor crops, remains insufficiently explored.

View Article and Find Full Text PDF

Orthohantavirus rodent hosts and genotypes in Southern South America: A narrative review.

PLoS Negl Trop Dis

September 2025

Instituto de Diversidad y Ecología Animal (IDEA), CONICET and Universidad Nacional de Córdoba, Córdoba, Córdoba, Argentina.

Orthohantaviruses, family Hantaviridae, are zoonotic agents that pose a significant public health threat, particularly in South America, where they cause severe respiratory illnesses in humans. Despite their importance, knowledge gaps remain regarding the distributions of both the viruses and their rodent hosts in Southern South America, a region characterized by a great complexity of viral genotypes and reservoirs. This review provides an updated overview of orthohantavirus hosts and their associated viral genotypes in Argentina, Chile, Paraguay, and Uruguay.

View Article and Find Full Text PDF