Inhibition of sperm capacitation and fertilizing capacity by adjudin is mediated by chloride and its channels in humans.

Hum Reprod

Unit of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China.

Published: January 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Study Question: Does adjudin disrupt chloride ion (Cl⁻) ion transport function in human sperm and impede sperm capacitation and fertilizing ability in vitro?

Summary Answer: In this study the results indicate that adjudin is a potent blocker of Cl⁻ channels: disrupting Cl⁻ ion transport function results in a decline in sperm capacitation and fertilizing ability in humans in vitro.

What Is Known Already: Although our previous studies have demonstrated that adjudin exerts its effect by disrupting sertoli-germ cell adhesion junctions, most notably apical ectoplasmic specialization by targeting testin and actin filament bundles that disrupts the actin-based cytoskeleton in sertoli cells, it remains unclear whether adjudin impedes Cl⁻ ion transport function in the human sperm.

Study Design, Size And Duration: Semen samples were obtained from 45 fertile men (aged 25-32). Spermatozoa were isolated from the semen in the human tube fluid (HTF) medium by centrifugation through a discontinuous Percoll gradient, and incubated with adjudin at 10 nM-10 µM and/or other reagents under capacitating conditions for 0-5 h.

Participants/materials, Setting, Methods: We evaluated the effect of adjudin and different reagents on sperm functions with which they were incubated at 37 °C. Sperm motility and hyperactivation were analyzed by a computer-assisted sperm analysis (CASA) system. Sperm capacitation and the acrosome reaction were assessed by chlortetracycline fluorescence staining. Sperm fertilizing ability was evaluated by sperm penetration of zona-free hamster egg assay, and cellular cAMP levels in spermatozoa were quantified by the EIA kit. The proteins tyrosine, serine and threonine phosphorylation in the presence or absence of adjudin were analyzed by means of a immunodetection of spermatozoa, especially, compared the effect of adjudin on sperm hyperactivation and capacitation in the complete HTF medium with the Cl⁻-deficient HTF medium as well as the various Cl⁻ channel blockers.

Main Results And The Role Of Chance: Adjudin significantly inhibited sperm hyperactivation but not sperm motility. Adjudin-induced inhibition of sperm capacitation was reversible, and it was found to block the rhuZP₃β- and progesterone-induced acrosome reaction in a dose-dependent manner. Adjudin also blocked sperm penetration of zona-free hamster eggs, and significantly inhibited both forskolin-activated transmembrane adenylyl cyclase and soluble adenylyl cyclase activities leading to a significant decline in the cellular cAMP levels in human spermatozoa. Adjudin failed to reduce sperm protein tyrosine phosphorylation but it did prevent sperm serine and threonine protein phosphorylation. Interestingly, adjudin was found to exert its inhibitory effects on sperm capacitation and capacitation-associated events only in the complete Cl⁻-HTF medium but not Cl⁻-deficient medium, illustrating the likely involvement of Cl⁻. Adjudin inhibits the fertility capacity of human sperm is mediated by disrupting chloride ion and its transport function.

Limitations, Reasons For Caution: This study has examined the effect of adjudin only on human sperm capacitation and fertilizing ability in vitro and thus has some limitations. Further investigations in vivo are needed to confirm adjudin is a potent male contraceptive.

Wider Implications Of The Findings: Our studies demonstrated that adjudin inhibition of capacitation is reversible and its toxicity is low, opening the door for the examination of adjudin as a mediator of male fertility control. Adjudin may be a safe, efficient and reversible male antifertility agent and applicable to initial clinical trials of adjudin as a male antifertility agent in humans. STUDING FUNDING/COMPETING INTEREST(S): This work was supported by the National Basic Research Program of China (2006CB504002), the Nature Science Foundation of China (Nos. 81000244 and 81170554), Zhejiang Project of Science and Technology (2011C23046), the Nature Science Fund of Zhejiang province (Nos.Y2100058 and Y2090236), the key Science and Technology Innovation Team of Zhejiang Province (No.2012R10048-07) and the National Institutes of Health (NICHD U54 HD029990 project 5), USA. The authors declare no conflict of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522416PMC
http://dx.doi.org/10.1093/humrep/des384DOI Listing

Publication Analysis

Top Keywords

sperm capacitation
28
adjudin
20
sperm
19
capacitation fertilizing
16
ion transport
16
fertilizing ability
16
cl⁻ ion
12
transport function
12
human sperm
12
htf medium
12

Similar Publications

Phosphatidylserine translocation, cholesterol spatial distribution, and acrosome reaction reliably distinguish sperm capacitation from cryoinjury in bovine sperm.

Cryobiology

September 2025

Laboratory of Teaching and Research in Pathology of Reproduction, Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, SP, Brazil. Electronic address:

Sperm capacitation is a critical process for successful fertilization, involving multiple regulated cellular changes. On the other hand, cryopreservation induces membrane changes that can mimic capacitation, potentially leading to misinterpretation of sperm function. Distinguishing true capacitation from cryoinjury remains challenging, as both share surface markers despite involving distinct mechanisms and impacts on fertilization.

View Article and Find Full Text PDF

Extracellular vesicles: key mediators in embryo production.

Front Vet Sci

August 2025

Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Nano-sized extracellular vesicles (EVs) possess a lipid bilayer and are secreted from cells into their surrounding environment. The transport of multiple biomolecules, including DNA together with RNA, microRNAs (miRNAs), lipids, proteins, and metabolites, happens through biofluids via EVs for intercellular communication. Extracellular vesicles play crucial roles during the embryo production (IVEP) process.

View Article and Find Full Text PDF

SPINK3-sperm interaction determines a stable sperm subpopulation with intact CatSper channel.

bioRxiv

August 2025

Instituto de Investigaciones Biológicas (IIB-FCEyN/CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.

Sperm capacitation involves proteolytic remodeling of membrane proteins, including components of the CatSper calcium channel, which is essential for hyperactivation and male fertility. Here, we identify the seminal protease inhibitor SPINK3, a known decapacitation factor that suppresses premature capacitation in the female tract, as the first physiological inhibitor of CATSPER1 processing. In mouse sperm, SPINK3 blocks capacitation-induced CATSPER1 cleavage, preserving a subpopulation with intact CatSper channels and lacking pTyr development in the flagellum.

View Article and Find Full Text PDF

The aim of this study was to analyze how recombinant rabbit NGF (Nerve Growth Factor) encapsulated in chitosan (rrβNGFch) affects sperm viability, motility, capacitation, acrosome reaction (AR), kinetic traits, and apoptosis after 30 min and 2 h of storage. Specific intracellular signaling pathways associated with either cell survival, such as protein kinase B (AKT) and extracellular signal-regulated kinases 1/2 (ERK1/2), or programmed cell death, such as c-Jun N-terminal kinase (JNK), were also analyzed. The results confirmed the effect of rrβNGFch on capacitation and AR, whereas a longer storage time (2 h) decreased all qualitative sperm traits.

View Article and Find Full Text PDF

High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) to identify metabolites and metabolic pathways associated with semen quality during the summer and winter months.

View Article and Find Full Text PDF