Formation of a micropatterned titania photocatalyst by microcontact printed silicatein on gold surfaces.

Chem Commun (Camb)

Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg-University, Duesbergweg 6, D-55128 Mainz, Germany.

Published: November 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The enzyme silicatein has been bioengineered to carry a thiol-bearing Au-affinity tag (Cys-tag) for direct immobilization on gold carriers in shortest time without the need for prior surface functionalization. Through microcontact printing, defined silicatein micropatterns were created on gold surfaces, facilitating the subsequent enzymatically controlled synthesis of photocatalytically active TiO(2).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc35977dDOI Listing

Publication Analysis

Top Keywords

gold surfaces
8
formation micropatterned
4
micropatterned titania
4
titania photocatalyst
4
photocatalyst microcontact
4
microcontact printed
4
printed silicatein
4
silicatein gold
4
surfaces enzyme
4
enzyme silicatein
4

Similar Publications

Statistical quantification of SERS signals in microfluidic flow using AuNP-bound polystyrene microparticles.

Anal Sci

September 2025

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.

View Article and Find Full Text PDF

Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.

View Article and Find Full Text PDF

The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.

View Article and Find Full Text PDF

Rationale: Prolapsed hemorrhoids can impair quality of life due to associated symptoms such as pain. While hemorrhoidectomy is considered the gold standard for treating prolapsed hemorrhoids, this procedure inevitably involves complications such as postoperative pain, bleeding, and delayed recovery. Therefore, there is an increasing need for treatment options that are immediate, effective, and minimally invasive, while also taking into account patients' physical and social backgrounds, preferences, and values.

View Article and Find Full Text PDF

A surface enhanced Raman scattering (SERS)-based sensing platform is devised integrating a TMB redox system for rapid dopamine detection. Gold nanobipyramids (Au NBPs), synthesized via the heat-mediated seed-mediated growth method, possess dual functionality of peroxidase-like activity and SERS activity. This enables them to catalyze the oxidation of TMB and simultaneously amplify the Raman signal of the oxidized TMB product (oxTMB).

View Article and Find Full Text PDF