98%
921
2 minutes
20
Little is known of how archaeal diversity and community ecology behaves along elevational gradients. We chose to study Mount Fuji of Japan as a geologically and topographically uniform mountain system, with a wide range of elevational zones. PCR-amplified soil DNA for the archaeal 16 S rRNA gene was pyrosequenced and taxonomically classified against EzTaxon-e archaeal database. At a bootstrap cut-off of 80%, most of the archaeal sequences were classified into phylum Thaumarchaeota (96%) and Euryarchaeota (3.9%), with no sequences classified into other phyla. Archaeal OTU richness and diversity on Fuji showed a pronounced 'peak' in the mid-elevations, around 1500 masl, within the boreal forest zone, compared to the temperate forest zone below and the alpine fell-field and desert zones above. Diversity decreased towards higher elevations followed by a subtle increase at the summit, mainly due to an increase in the relative abundance of the group I.1b of Thaumarchaeota. Archaeal diversity showed a strong positive correlation with soil NH(4)(+), K and NO(3)(-). Archaeal diversity does not parallel plant diversity, although it does roughly parallel bacterial diversity. Ecological hypotheses to explain the mid diversity bulge on Fuji include intermediate disturbance effects, and the result of mid elevations combining a mosaic of upper and lower slope environments. Our findings show clearly that archaeal soil communities are highly responsive to soil environmental gradients, in terms of both their diversity and community composition. Distinct communities of archaea specific to each elevational zone suggest that many archaea may be quite finely niche-adapted within the range of soil environments. A further interesting finding is the presence of a mesophilic component of archaea at high altitudes on a mountain that is not volcanically active. This emphasizes the importance of microclimate - in this case solar heating of the black volcanic ash surface--for the ecology of soil archaea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435261 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044494 | PLOS |
mSphere
September 2025
Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.
Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.
View Article and Find Full Text PDFPLoS One
September 2025
Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America.
Using environmental DNA (eDNA)-based tools, we examined sediments underlying a ~ 1.25 hectare commercial kelp farm in the Gulf of Maine growing sugar kelp (Saccharina latissima) for two farming seasons, post-harvest. Two eDNA methods were used: a newly designed S.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Urban Horticulture Research and Extension Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
Aims: Phytoremediation is an effective method of remediating soils contaminated with heavy metals. However, it has some limitations in practical applications with regard to rare plant species, poor environmental adaptability, and long growth cycles. The dynamic response mechanisms of soil microbial communities during phytoremediation are still unclear, which restricts the optimization and promotion of this approach.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
The lotus-fish co-culture (LFC) system leverages plant-fish symbiosis to optimize aqua-culture environments, enhancing both economic and ecological yields. However, the eco-logical mechanisms of microbial communities in LFC systems remain poorly understood, particularly regarding the functional roles of fungi, archaea, and viruses. This study compared microbiota (viruses, archaea, fungi) in water, sediment, and fish (crucian carp) gut of LFC and intensive pond culture (IPC) systems using integrated metagenomic and environmental analyses.
View Article and Find Full Text PDF