98%
921
2 minutes
20
In this work, a new extraction method termed aerosol phase extraction has been developed for the first time. The new method was based on the nebulisation of the sample onto the extracting solution to maximize the contact surface. The influential parameters are: agitation time, chelating agent concentration and inorganic acid concentration. The method has been applied to the extraction of molybdenum with organophosphorus chelating agents such as tributyl phosphate (TBP) and bis(2-Ethylhexyl) phosphoric acid (D2EHPA) dissolved in n-hexane from aqueous hydrochloric and phosphoric acid solutions. In order to test the efficiency of the method, the aqueous phase has been analyzed by means of Inductively Coupled Plasma Atomic Emission Spectrometry. The extraction of molybdenum under aerosol phase was found to be faster than the conventional extraction method. Equilibrium time was shortened under aerosol phase extraction and molybdenum extraction yields were comparable, or better as compared to the conventional method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2012.05.060 | DOI Listing |
Environ Sci Technol
September 2025
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, UMR 6296, Clermont-Ferrand 63000, France.
Pesticide contamination is a growing and alarming concern for both the environment and human health. Widely used in agriculture to control pests and disease carriers, pesticides undergo extensive long-range atmospheric transport in the gas phase, in aerosols, and, as shown here, in clouds. We measured the concentration of 32 pesticides at the puy de Dôme observatory (France) in the sub μg L to μg L range in cloud water, largely arising from regional to long-range transport that also involves pesticides currently banned for agricultural use in France.
View Article and Find Full Text PDFRSC Adv
August 2025
King Abdulaziz City for Science and Technology (KACST), Hydrogen Technologies Institute Saudi Arabia
This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Coriolis Pharma Research GmbH, Fraunhoferstraße 18 b, Martinsried 82152, Germany.
Fenton-like reagents serve as useful tools to induce oxidative stress in forced degradation studies of surfactants, providing a relevant model due to the possible presence of trace amounts of transition metal ions and peroxides in liquid drug formulations. It is known that catalytic reactivity of transition metal ions heavily depends on the ligands present in the solution and that it differs between buffer systems. Herein, we compare the influence of common buffers and chelating agents on poloxamer188 (P188) degradation by using a fast-gradient reversed phase chromatography with charged aerosol detection (LC-CAD) and automatic sample preparation.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
Hydroxymethyl-methyl-α-lactone (HMML) is a key epoxide precursor in forming tracer compounds 2-methylglyceric acid (2-MG) or 2-methylglyceric acid sulfate (2-MGOS) from isoprene under high-NOx conditions. Despite its importance, the formation and transformation of HMML─particularly under acidic aerosol conditions─are still poorly understood, limiting comprehensive knowledge of secondary organic aerosol (SOA) formation. In this study, quantum chemical calculations, Born-Oppenheimer molecular dynamics (BOMD), and metadynamics (MTD) simulations are employed to investigate both the formation of HMML from methacryloyl peroxynitrate (MPAN) and its interfacial transformation mechanisms on sulfuric acid aerosols.
View Article and Find Full Text PDFMikrochim Acta
September 2025
State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound
The precise and selective determination of ginsenosides, pharmacologically diverse saponins abundant in Panax species, is crucial for their therapeutic development and stringent quality control. However, inherent challenges, including their weak ultraviolet absorption and the high polarity imparted by sugar moieties, complicate their determination. Addressing these limitations, this study introduces the first-time construction and application of a boronate affinity dendritic mesoporous silica nanomaterial (BA-DMSN) as a highly efficient adsorbent for ginsenoside pretreatment.
View Article and Find Full Text PDF