98%
921
2 minutes
20
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404883 | PMC |
http://dx.doi.org/10.4161/auto.19496 | DOI Listing |
Hum Pathol
September 2025
Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address:
Renal cell carcinoma (RCC) is a heterogeneous kidney malignancy driven by complex genetic, molecular, and metabolic alterations. Emerging evidence implicates centrosome dysfunction and autophagy dysregulation in RCC initiation, progression, and resistance to therapy. The centrosome plays a critical role in mitotic fidelity, and its dysfunction often leads to chromosomal and genomic instability.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
The Third Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Heping Road, Linghe District, Jinzhou, City, Liaoning Province, 121000, PR China. Electronic address:
We explored the role of Polygonatum Rhizoma polysaccharide (PRP) in delaying aging and improving Alzheimer's disease (AD) and revealed its potential molecular mechanism. Through chemical characterizations to clarify the physicochemical properties of PRP, it was found that PRP mainly consists of mannose, glucose, galactose, and arabinose, with molecular weights ranging from 7.4 × 10 to 9.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention &Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, PR China. Electronic address
While vault RNA1-1 (vtRNA1-1) has been implicated in tumor biology, its specific role in cancer stemness and regorafenib resistance remains unexplored. In this study, we identify vtRNA1-1 as a critical regulator of cancer stemness and chemoresistance in Hepatocellular carcinoma (HCC). vtRNA1-1 enhances stemness properties by modulating the nuclear accumulation of Nanog, a core transcription factor.
View Article and Find Full Text PDFJ Int Med Res
September 2025
Medicine Faculty, Muğla Sıtkı Koçman University, Turkey.
ObjectivePseudoexfoliation syndrome is a systemic disease of unknown etiology, seen in advanced ages, characterized by extracellular material accumulation in ocular tissues and visceral organs. Autophagy, which is a basic metabolic pathway, provides macromolecule recycling of the cell and maintains cell homeostasis by adapting to the cell's stress environment. The aim of this study was to examine the relationship between specific mechanisms of autophagy and pseudoexfoliation syndrome.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:
Immune-mediated necrotizing myopathy (IMNM) is an emerging and severe form of myositis. Most patients experience persistent muscle weakness or recurrent attacks within their lifetime. The previous view suggests that autoimmune and complement activation play a key role in muscle damage, and aggressive immunotherapy may benefit patients.
View Article and Find Full Text PDF