Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mechanical cues can influence the manner in which cells generate traction forces and form focal adhesions. The stiffness of a cell's substrate and the available area on which it can spread can influence its generation of traction forces, but to what extent these factors are intertwined is unclear. In this study, we used microcontact printing and micropost arrays to control cell spreading, substrate stiffness, and post density to assess their effect on traction forces and focal adhesions. We find that both the spread area and the substrate stiffness influence traction forces in an independent manner, but these factors have opposite effects: cells on stiffer substrates produce higher average forces, whereas cells with larger spread areas generate lower average forces. We show that post density influences the generation of traction forces in a manner that is more dominant than the effect of spread area. Additionally, we observe that focal adhesions respond to spread area, substrate stiffness, and post density in a manner that closely matches the trends seen for traction forces. This work supports the notion that traction forces and focal adhesions have a close relationship in their response to mechanical cues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443781PMC
http://dx.doi.org/10.1016/j.bpj.2012.07.023DOI Listing

Publication Analysis

Top Keywords

traction forces
32
focal adhesions
20
substrate stiffness
16
spread area
16
forces focal
12
post density
12
forces
10
traction
8
mechanical cues
8
generation traction
8

Similar Publications

In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed the concurrent occurrence of both tail-to-head and head-to-tail defect motion in the same cell monolayer.

View Article and Find Full Text PDF

Biomimetic hydrogel platform reveals active force transduction from retinal pigment epithelium to photoreceptors.

Acta Biomater

September 2025

Faculty of medicine and health technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland. Electronic address:

In the eye, the retinal pigment epithelium (RPE) maintains the functionality and welfare of retinal photoreceptors and forms a tight, interlocked structure with photoreceptor outer segments (POSs). The RPE-retina interaction is difficult to recapitulate in vitro, limiting the studies addressing the retinal maintenance functions of the RPE. To overcome this challenge, we constructed a retina-mimicking structure using a soft polyacrylamide hydrogel coated with Matrigel.

View Article and Find Full Text PDF

Traction-regulated persistence governs durotaxis across cell types.

Eur J Cell Biol

September 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China. Electronic address:

Cell migration toward stiffer or softer environments (durotaxis) underlies processes from development to cancer metastasis, yet the underlying mechanism and its universality remain unclear. To resolve this, we investigated how traction forces and directional persistence dictate cell migration along stiffness gradients. We utilized tunable PEG hydrogels with stiffness gradients of 1-16 kPa and perturbed contractility (blebbistatin, oligomycin), and adhesion (vinculin mutants), in cancer cells exhibiting opposing durotactic biases.

View Article and Find Full Text PDF

Whether at the molecular or cellular scale in organisms, cell-cell adhesion adapts to external mechanical cues arising from the static environment of cells and from dynamic interactions between neighboring cells. Cell-cell adhesion needs to resist detachment forces to secure the integrity and internal organization of organisms. In the past, various techniques have been developed to characterize adhesion properties of molecules and cells in vitro and to understand how cells sense and probe their environment.

View Article and Find Full Text PDF

This study aimed to evaluate the resistance of anastomoses to mechanical traction in an ex vivo biomechanical experiment, to determine the most resistant manual suture for restoring digestive tract continuity after various types of gastric resection for cancer. Materials and methods: The tensile strength of different types of anastomoses was compared ex vivo using porcine esophagus, stomach, and small intestine. The test setup included a tensile testing device, which applied a controlled force on the anastomoses until they broke, which was recorded for each type of anastomosis and was expressed in N.

View Article and Find Full Text PDF