Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling.

J Environ Sci (China)

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.

Published: September 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study was designed to clarify the influence of operating conditions on the formation and emissions of polychlorinated-p-dibenzodioxins and dibenzofurans (PCDD/Fs) from a sintering process with hot flue gas recycling. A pilot scale sinter pot with simulated flue gas recycling was developed, and four key operational parameters, including temperature, oxygen content of the simulated waste flue gas, the coke rate of the sintering mixture, and the quicklime quality, were selected for exploring PCDD/Fs formation. The results showed that the temperature of the recycled flue gas had a major affect on PCDD/Fs formation, and a high temperature could significantly increase their formation during sintering. A clear linear correlation between the temperature of recycling flue gas and PCDD/Fs emission (r = 0.93) was found. PCDD/Fs could be reduced to a certain extent by decreasing the level of oxygen in the recycled flue gas, while sintering quality was unchanged. The coke rate had no significant influence on the formation of PCDD/Fs, but the quality of quicklime used in the sintering mixture could affect not only the amount of PCDD/Fs emissions but also the sintering productivity. Compared with a benchmark sinter pot test, PCDD/Fs emissions markedly decreased with improvements to quicklime quality. However, the reduction in PCDD/Fs emissions realized by using high-quality quicklime was limited by the temperature of the inlet gas. The highest reduction achieved was 51% compared with conventional quicklime when the temperature of the inlet gas was 150 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(11)60869-3DOI Listing

Publication Analysis

Top Keywords

flue gas
28
pcdd/fs emissions
16
sinter pot
12
gas recycling
12
pcdd/fs
10
gas
9
hot flue
8
coke rate
8
sintering mixture
8
quicklime quality
8

Similar Publications

This study examines the flue gas emissions originated from various fuel types used in the textile industries of Faisalabad, Pakistan, and their compliance with the Punjab Environmental Quality Standards (PEQS), Pakistan. Data from 109 textile factories revealed significant emission variations based on fuel types. Natural gas was identified as an eco-friendly fuel, with emissions far below the PEQS limits (CO: 334.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a ubiquitous polymer with a lack of viable waste management solutions besides mechanical recycling, incineration, and landfilling. Herein, we demonstrate a chemical upcycling of PET waste into materials for CO capture via aminolysis. The aminolysis reaction products-a bis-aminoamide (BAETA) and oligomers-exhibit high CO capture capacity up to 3.

View Article and Find Full Text PDF

Cis/Trans Mononuclear Copper(II) Nodes with Dual Open-Metal and Lewis-Base Sites: A Metal-Organic Framework Enabling Selective CO Capture from Flue Gas.

Inorg Chem

September 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong266100, P. R. China.

The development of porous materials for the selective capture of CO from flue gas and biogas is crucial for ecological conservation and clean energy advancement. Herein, a novel three-dimensional copper-based metal-organic framework (Cu-MOF) was solvothermally synthesized by using a multifunctional ligand abundant in carboxyl and triazole groups. Inorganic secondary building units (SBUs) feature two types of square-planar mononuclear copper SBUs: a highly polar cis configuration and a symmetric trans configuration.

View Article and Find Full Text PDF

With the rapid development of industrialization in China, more and more industrial solid wastes (ISWs) are generated in industrial production processes. Under the pressure for safe disposals or utilization of ISWs as resources, and the demand for soil pollution remediation in China, there have been attempts to incorporate ISWs into agricultural land as soil amendments, while the environmental impacts of ISWs applied on agricultural land have aroused great concerns. This paper presents a comprehensive overview regarding the environmental risks from impacts of 7 types of ISWs (including blast furnace slag, steel slag, magnesium slag, coal-fired flue gas desulfurization gypsum, phosphogypsum, calcium carbide slag, and ammonia-soda residue) applied on agricultural land.

View Article and Find Full Text PDF

Emissions and carbon isotopic signatures of polycyclic aromatic compounds (PAHs, OPAHs) produced by coking in China.

Environ Pollut

September 2025

College of Environment and Ecology, Laboratory of Compound Air Pollution Identification and Control, Taiyuan University of Technology, Taiyuan, 030024, China.

The coking industry is a major source of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs). Although some OPAHs are considered to be more toxic than PAHs, limited information is available on the levels of PAH and OPAH emissions from the coking industry. Accordingly, we measured the emission factors (EF) for PAHs and OPAHs produced by the coking industry in China.

View Article and Find Full Text PDF