98%
921
2 minutes
20
Near-infrared (NIR) fluorescence probes are especially useful for simple and noninvasive in vivo imaging inside the body because of low autofluorescence and high tissue transparency in the NIR region compared with other wavelength regions. However, existing NIR fluorescence probes for matrix metalloproteinases (MMPs), which are tumor, atherosclerosis, and inflammation markers, have various disadvantages, especially as regards sensitivity. Here, we report a novel design strategy to obtain a NIR fluorescence probe that is rapidly internalized by free diffusion and well retained intracellularly after activation by extracellular MMPs. We designed and synthesized four candidate probes, each consisting of a cell permeable or nonpermeable NIR fluorescent dye as a Förster resonance energy transfer (FRET) donor linked to the NIR dark quencher BHQ-3 as a FRET acceptor via a MMP substrate peptide. We applied these probes for detection of the MMP activity of cultured HT-1080 cells, which express MMP2 and MT1-MMP, by fluorescence microscopy. Among them, the probe incorporating BODIPY650/665, BODIPY-MMP, clearly visualized the MMP activity as an increment of fluorescence inside the cells. We then applied this probe to a mouse xenograft tumor model prepared with HT-1080 cells. Following intratumoral injection of the probe, MMP activity could be visualized for much longer with BODIPY-MMP than with the probe containing SulfoCy5, which is cell impermeable and consequently readily washed out of the tissue. This simple design strategy should be applicable to develop a range of sensitive, rapidly responsive NIR fluorescence probes not only for MMP activity, but also for other proteases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja303931b | DOI Listing |
Talanta
September 2025
School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China. Electronic address:
Acute kidney injury (AKI) is a swiftly advancing condition that may result in kidney failure and pose a significant threat to life. Therefore, diagnosis of AKI is crucial for treating AKI and preventing the worsening of the condition. We developed a near-infrared fluorescent probe, CyO@CD-Ser, designed for the diagnosis of AKI.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g
The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.
View Article and Find Full Text PDFJ Org Chem
September 2025
School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin D07 EWV4, Ireland.
A series of unsymmetrically substituted BODIPY dyes featuring fused benzo- or naphtho-fragments on one pyrrolic unit were synthesized from the corresponding pyrrolic precursors. The synthetic route was optimized using a modular approach based on the condensation of formylpyrroles with alkylpyrroles, enabling the identification of precursor combinations that minimize byproduct formation and improve preparative yields. The resulting benzo- and naphtho-fused BODIPYs display intense fluorescence in the red region, with emission maxima spanning 590-680 nm and fluorescence quantum yields ranging from 0.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2025
Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruit and fruit-based products are a valuable source of essential nutrients, critical for food security, and drive economic productivity with minimal inputs. The significant rise in global demand for high-quality imported fruit and fruit-based products reflects a shift in consumer awareness and interest in the products origin and potential health-promoting bioactive compounds. Analytical techniques such as liquid chromatography, gas chromatography, inductively coupled plasma techniques, isotope-ratio mass spectrometry (IRMS), near infrared (NIR) spectroscopy, visible near infrared (VIS-NIR) spectroscopy, hyperspectral imaging (HSI), mid-infrared (MIR) spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, dielectric spectroscopy, electronic nose (e-nose), and electronic tongue (e-tongue) coupled with supervised and unsupervised chemometrics can be employed for traceability, authentication, and bioactive profiling of fruit and fruit-based products.
View Article and Find Full Text PDFLuminescence
September 2025
Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India.
The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.
View Article and Find Full Text PDF