A text-mining system for extracting metabolic reactions from full-text articles.

BMC Bioinformatics

Department of Biological Sciences and Institute of Molecular and Structural Biology, Birkbeck, University of London, London, UK.

Published: July 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Increasingly biological text mining research is focusing on the extraction of complex relationships relevant to the construction and curation of biological networks and pathways. However, one important category of pathway - metabolic pathways - has been largely neglected.Here we present a relatively simple method for extracting metabolic reaction information from free text that scores different permutations of assigned entities (enzymes and metabolites) within a given sentence based on the presence and location of stemmed keywords. This method extends an approach that has proved effective in the context of the extraction of protein-protein interactions.

Results: When evaluated on a set of manually-curated metabolic pathways using standard performance criteria, our method performs surprisingly well. Precision and recall rates are comparable to those previously achieved for the well-known protein-protein interaction extraction task.

Conclusions: We conclude that automated metabolic pathway construction is more tractable than has often been assumed, and that (as in the case of protein-protein interaction extraction) relatively simple text-mining approaches can prove surprisingly effective. It is hoped that these results will provide an impetus to further research and act as a useful benchmark for judging the performance of more sophisticated methods that are yet to be developed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475109PMC
http://dx.doi.org/10.1186/1471-2105-13-172DOI Listing

Publication Analysis

Top Keywords

extracting metabolic
8
metabolic pathways
8
protein-protein interaction
8
interaction extraction
8
metabolic
5
text-mining system
4
system extracting
4
metabolic reactions
4
reactions full-text
4
full-text articles
4

Similar Publications

The legalization of cannabis in several states across the United States has increased the need to better understand its effects on the body, brain, and behavior, particularly in different populations. Previous rodent studies have revealed age and sex differences in response to injected Δ-tetrahydrocannabinol (THC). However, the pharmacokinetic and pharmacodynamic properties of THC administered through more translationally relevant routes of administration are less well known.

View Article and Find Full Text PDF

and Pall. are traditionally used to manage cardiovascular health. However, clinical evidence evaluating standardized extracts for specific cardiovascular benefits is still evolving.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Background: Pentoxifylline (PTX), a methylxanthine derivative, has been recognized as a potential anti-inflammatory treatment across various conditions, yet its effects on inflammatory markers remain inconsistent. This systematic review/meta-analysis evaluated the impact of PTX on serum levels and gene expression of key inflammatory markers in randomized controlled trials (RCTs).

Methods: A systematic search was conducted in PubMed, Scopus, Embase, Web of Science, and ProQuest up to May 2025.

View Article and Find Full Text PDF

The UFD-1 (ubiquitin fusion degradation 1)-NPL-4 (nuclear protein localization homolog 4) heterodimer is involved in extracting ubiquitinated proteins from several plasma membrane locations, including the endoplasmic reticulum. This heterodimer complex helps in the degradation of ubiquitinated proteins via the proteasome with the help of the AAA+ATPase CDC-48. While the ubiquitin-proteasome system is known to have important roles in maintaining innate immune responses, the role of the UFD-1-NPL-4 complex in regulating immunity remains elusive.

View Article and Find Full Text PDF