98%
921
2 minutes
20
Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na(+) channel (SCN5A) abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We describe loss of Na(+) channel function and fibrotic changes associated with both loss and gain-of-function Na(+) channel mutations. Recent reports further relate the progressive fibrotic changes to upregulation of TGF-β1 production and the transcription factors, Atf3, a stress-inducible gene, and Egr1, to the presence of heterozygous Scn5a gene deletion. Both changes are thus directly implicated in the clinically observed disruptions in sino-atrial node pacemaker function, and sino-atrial and ventricular conduction, and their progression with age. Murine systems with genetic modifications in Scn5a thus prove a useful tool to address questions concerning roles of genetic and environmental modifiers on human SCN5A disease phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390692 | PMC |
http://dx.doi.org/10.3389/fphys.2012.00234 | DOI Listing |
Sci Prog
September 2025
Department of Neurology, University of Afyonkarahisar Health Sciences, Afyonkarahisar, Türkiye.
A considerable number of individuals are diagnosed with idiopathic trigeminal neuralgia. In order to achieve a more complete understanding of the pathophysiology, it is essential to adopt a range of novel approaches and utilize new animal models. This study investigated changes in the messenger RNA (mRNA) expression of ion-channels in a newly developed animal model of trigeminal neuropathic pain induced by cervical spinal dorsal horn compression.
View Article and Find Full Text PDFAnn Clin Transl Neurol
September 2025
Department of Neurology, Brain Centre Utrecht, University Medical Centre Utrecht, Utrecht, the Netherlands.
Objective: We investigated the effects of C9orf72 mutation carriership on peripheral nerve excitability in asymptomatic individuals from families with a history of C9orf72 amyotrophic lateral sclerosis (ALS) and patients.
Methods: We included 47 asymptomatic individuals from families with a history of C9orf72 ALS, of whom 23 were carriers (C9) and 24 were noncarriers (C9). In addition, 11 C9 and 110 C9 ALS patients and 50 healthy controls participated.
Langmuir
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, MS 6473, Oak Ridge, Tennessee 37831 United States.
Mordenite ((Ca,Na,K)AlSiO·7HO) is a natural and synthetic nanoporous zeolite containing several channels of different sizes in its structure. Because of this, its structure provides an important opportunity to study the relationship between confined and ultraconfined water as these channels have sizes between those typical of these water environments. In this study, the properties of water molecules in these environments were analyzed using inelastic and quasielastic neutron spectroscopy of a natural mordenite.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
September 2025
Department of Cardiac Surgery, University Hospital Halle (Saale), University of Halle, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.
We compared the effects of ex-vivo machine perfusion (EVMP) of hearts donated after circulatory death (DCD) with the single-shot solutions HTK-N and Del Nido cardioplegia (DNC) on left-ventricular (LV) contractility and myocardial microcirculation. In a DCD pig model, hearts were maintained by EVMP with hypothermic, oxygenated HTK-N (DCD-HTK-N; N = 8) or DNC (DCD-DNC; N = 8) followed by reperfusion with blood, including assessment of contractility and microcirculation with Laser-Doppler-Flow (LDF). We performed transcriptomics using microarrays.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
Introduction: The α-adrenoceptor (αAR) is involved in the physiopathology of the central nervous system (CNS), but its function in the adult male rat locus coeruleus (LC) has not been fully studied. We aimed to characterize the role of the αAR in the regulation of the firing rate (FR) of LC neurons and to describe the signaling pathways involved.
Methods: We measured, through single-unit extracellular recordings of LC neurons from adult male rats were used to measure the effect of adrenergic agonists in the presence and absence of adrenergic antagonists or inhibitors of several signalling pathways.