Conformational effect on energy transfer in single polythiophene chains.

J Phys Chem B

Center for Nano and Molecular Science and Technology, Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, United States.

Published: August 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein we describe the use of regioregular (rr-) and regiorandom (rra-) P3HT as models to study energy transfer in ordered and disordered single conjugated polymer chains. Single molecule fluorescence spectra and excitation/emission polarization measurements were compared with a Förster resonance energy transfer (FRET) model simulation. An increase in the mean single chain polarization anisotropy from excitation to emission was observed for both rr- and rra-P3HT. The peak emission wavelengths of rr-P3HT were at substantially lower energies than those of rra-P3HT. A simulation based on FRET in single polymer chain conformations successfully reproduced the experimental observations. These studies showed that ordered conformations facilitated efficient energy transfer to a small number of low-energy sites compared to disordered conformations. As a result, the histograms of spectral peak wavelengths for ordered conformations were centered at much lower energies than those obtained for disordered conformations. Collectively, these experimental and simulated results provide the basis for quantitatively describing energy transfer in an important class of conjugated polymers commonly used in a variety of organic electronics applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp306674tDOI Listing

Publication Analysis

Top Keywords

energy transfer
20
lower energies
8
ordered conformations
8
disordered conformations
8
transfer
5
single
5
conformations
5
conformational energy
4
transfer single
4
single polythiophene
4

Similar Publications

l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.

View Article and Find Full Text PDF

The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.

View Article and Find Full Text PDF

Engineering Brønsted Acidic Microenvironments via Strong Metal-Support Interaction in Single-Atom Pd/CeO for Acid-Free Acetalization Catalysis.

Inorg Chem

September 2025

College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia

Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.

View Article and Find Full Text PDF

The absorption of laser energy by plasma is of paramount importance for various applications. Collisional and resonant processes are often invoked for this purpose. However, in some contexts (e.

View Article and Find Full Text PDF

A dual-engineered covalent organic framework with charge-oxygen synergy promotes photocatalytic dipolar [3 + 2] cycloaddition.

Chem Sci

August 2025

College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China

The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.

View Article and Find Full Text PDF