98%
921
2 minutes
20
Gait disturbances are common in the rat model of Parkinson's disease (PD) by administrating 6-hydroxydopamine. However, few studies have simultaneously assessed spatiotemporal gait indices and the kinematic information of PD rats during overground locomotion. This study utilized a simple, accurate, and reproducible method for quantifying the spatiotemporal and kinematic changes of gait patterns in hemiparkinsonian rats. A transparent walkway with a tilted mirror was set to capture underview footprints and lateral joint ankle images using a high-speed and high-resolution digital camera. The footprint images were semi-automatically processed with a threshold setting to identify the boundaries of soles and the critical points of each hindlimb for deriving the spatiotemporal and kinematic indices of gait. Following PD lesion, asymmetrical gait patterns including a significant decrease in the step/stride length and increases in the base of support and ankle joint angle were found. The increased footprint length, toe spread, and intermediary toe spread were found, indicating a compensatory gait pattern for impaired locomotor function. The temporal indices showed a significant decrease in the walking speed with increased durations of the stance/swing phase and double support time, which was more evident in the affected hindlimb. Furthermore, the ankle kinematic data showed that the joint angle decreased at the toe contact stage. We conclude that the proposed gait analysis method can be used to precisely detect locomotor function changes in PD rats, which is useful for objective assessments of investigating novel treatments for PD animal model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-012-0933-5 | DOI Listing |
Fluids Barriers CNS
September 2025
Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden.
Background: Idiopathic normal pressure hydrocephalus (iNPH) predominantly manifests with gait disturbances, yet clinical assessments are vulnerable to confirmation bias, particularly post-shunt surgery. Blinded video evaluations are a method to enhance objectivity in gait assessment, but their reliability has never been systematically investigated. The aim was to evaluate the inter-rater reliability of blinded gait assessments in iNPH patients and to investigate how these assessments correlate with the Hellström iNPH scale and patient-reported health status following shunt surgery.
View Article and Find Full Text PDFBMC Neurol
September 2025
Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
Background: Parkinson's disease (PD) is characterized by motor symptoms altering gait domains such as slow walking speed, reduced step and stride length, and increased double support time. Gait disturbances occur in the early, mild to moderate, and advanced stages of the disease in both backward walking (BW) and forward walking (FW), but are more pronounced in BW. At this point, however, no information is available about BW performance and disease stages specified using the Hoehn and Yahr (H&Y) scale.
View Article and Find Full Text PDFJ Neuroeng Rehabil
September 2025
Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany.
Innovative technology allows for personalization of stimulation frequency in dual-site deep brain stimulation (DBS), offering promise for challenging symptoms in advanced Parkinson's disease (PD), particularly freezing of gait (FoG). Early results suggest that combining standard subthalamic nucleus (STN) stimulation with substantia nigra pars reticulata (SNr) stimulation may improve FoG outcomes. However, patient response and the optimal SNr stimulation frequency vary.
View Article and Find Full Text PDFBMC Neurol
September 2025
Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen, North Rhine-Westphalia, Germany.
Background: Cerebellar pathologies in adults can have a wide range of hereditary, acquired and sporadic-degenerative causes. Due to the frequency in daily hospital, especially intensive care, settings, electrolyte imbalances are an important, yet rare differential diagnosis. The hypomagnesemia-induced cerebellar syndrome (HiCS) constitutes a relevant disease entity with clinical and morphological variability due to a potential progression of symptoms and a promising causal treatment.
View Article and Find Full Text PDFGait Posture
September 2025
Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
Background: While the plantar fat pad is known for its role in shock absorption and plantar force distribution during weight-bearing activities, its impact on running biomechanics is not well understood.
Research Question: Does plantar fat pad thickness affect lower limb biomechanics and plantar pressure distribution during running in healthy adults?
Methods: This cross-sectional observational study involved fourteen participants (18-50 years) who ran at their preferred speed on a 10-meter walkway while lower limb kinematics and ground reaction forces were recorded using a motion capture system. Plantar pressure and force on the right foot were measured using a pressure platform.