Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could then be used in an automatic fashion to generate patient-specific scaffolds for the treatment of tissue defects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-764-4_1DOI Listing

Publication Analysis

Top Keywords

architectural arrangements
8
surface area
8
architectures
7
material
5
modulus
5
computer-aided tissue
4
tissue engineering
4
engineering benefiting
4
benefiting control
4
control scaffold
4

Similar Publications

Unlabelled: Plasma membrane (PM) lipids and proteins are organized into nanoscale regions called nanodomains, which regulate essential cellular processes by controlling local membrane organization. Despite advances in super-resolution microscopy and single particle tracking, the small size and temporal instability of nanodomains make them difficult to study in living cells. To overcome these challenges, we built fluorescent DNA origami probes that insert into the PM via lipid anchors displayed on the cell.

View Article and Find Full Text PDF

Crystal arrangements with versatile architectures can be developed by varying functionalization in structurally similar building components and exploring the significance of such networking, which remains a key focus of interest in the functional world of applied inorganic chemistry. In this context, we have introduced a series of novel coordination polymers (CPs), ({[Cd(L1)(SeCN)]·0.5CHCl.

View Article and Find Full Text PDF

Heart in a knot: unraveling the impact of the nested tori myofiber architecture on ventricular mechanics.

Biomech Model Mechanobiol

September 2025

Department of BioMechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands.

The intricate three-dimensional organization of cardiac myofibers and sheetlets plays a critical role in the mechanical behavior of the human heart. Despite extensive research and the development of various rule-based myofiber architecture surrogate models, the precise arrangement of these structures and their impact on cardiac function remain subjects of debate. In this study, we present a novel myofiber architecture surrogate inspired by Streeter's nested tori conjecture, modeling the left ventricle as a series of smoothly twisting toroidal surfaces populated by continuous myofiber and sheetlet fields.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis (CME) is an important internalization route for macromolecules, lipids, and membrane receptors in eukaryotic cells. During CME, the plasma membrane invaginates and pinches off forming a clathrin coated vesicle. We previously identified heterogeneity in this process with clathrin coated vesicles forming though multiple routes including simultaneous clathrin accumulation and membrane invagination (constant curvature; CCM) as well as membrane bending after accumulation of flat clathrin (flat to curved; FTC).

View Article and Find Full Text PDF

New biological insights are increasingly dependent upon a deeper understanding of tissue architectures. Critical to such studies are spatial transcriptomics technologies, especially those amenable to analysis of the most widely available human tissue type, formalin-fixed and paraffin-embedded (FFPE) clinical specimens. Here we build on our previous oligonucleotide probe ligation-based approach to accurately analyze FFPE mRNA, which suffers from variable levels of degradation.

View Article and Find Full Text PDF