98%
921
2 minutes
20
The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423551 | PMC |
http://dx.doi.org/10.1021/cb3000887 | DOI Listing |
Turkiye Parazitol Derg
September 2025
Ege University Faculty of Medicine, Department of Parasitology, İzmir, Türkiye.
Objective: Leishmaniasis, caused by protozoan parasites of the spp., presents significant global health challenges, with visceral leishmaniasis (VL) and cutaneous leishmaniasis forms causing severe morbidity and mortality. Macrophages serve as primary host cells, where spp.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum, Türkiye.
Rejection following liver and kidney transplantation remains a major barrier to long-term graft survival. Early and reliable detection of rejection is crucial for optimizing patient outcomes and guiding personalized therapeutic approaches. Despite ongoing efforts, currently available serum-based biomarkers often fail to provide sufficient sensitivity and specificity for early diagnosis.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy. Electronic address:
Fish is one of the most common causes of food allergy. The global prevalence of fish allergy has increased over the years as a result of the increased fish consumption. In allergic individuals even small amounts of allergen can trigger a life-threatening allergic reaction.
View Article and Find Full Text PDFOncogene
September 2025
Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
Preferentially expressed antigen in melanoma (PRAME), which is highly expressed in melanoma, is associated with tumor progression and malignancy. Notably, melanoma cells often exhibit inactivation of the tumor suppressor p53 despite carrying the wild-type p53 gene. Here, we investigated the functional interplay between PRAME and p53.
View Article and Find Full Text PDF