98%
921
2 minutes
20
Objective: Human effector memory (EM) CD8(+) T cells include IL-7Rα(high) and IL-7Rα(low) cells with distinct cellular characteristics, including the expression of cytotoxic molecules. Both NK cells and the NK cell-associated molecule 2B4 that is expressed on CD8(+) T cells promote cytotoxicity. Here we analysed the expression of 2B4 on IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells and its contribution to cytotoxicity. We also analysed the frequency of IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells in patients with SLE or lupus and in healthy individuals given the potential role of cytotoxic CD8(+) T cells in the pathogenesis of lupus.
Methods: We used flow cytometry to measure the expression of 2B4 on IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells as well as the frequency of these cell populations in the peripheral blood of healthy individuals and patients with SLE. Also, 2B4-mediated cytotoxicity was quantitated in IL-7Rα(high) and IL-7Rα(low) EM CD8(+) T cells using target cells with CD48 antigen.
Results: We found that IL-7Rα(high) EM CD8(+) T cells had higher levels of 2B4 expression compared with IL-7Rα(low) EM CD8(+) T cells. Triggering 2B4 enhanced the cytotoxic function of IL-7Rα(low) EM CD8(+) T cells against target cells. We also noticed that patients with SLE had an increased frequency of IL-7Rα(low) EM CD8(+) T cells that correlated with disease manifestation.
Conclusion: Our findings show that SLE patients have increased IL-7Rα(low) EM CD8(+) T cells, possibly contributing to tissue damage through 2B4-mediated cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418646 | PMC |
http://dx.doi.org/10.1093/rheumatology/kes100 | DOI Listing |
EMBO J
September 2025
Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.
Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.
View Article and Find Full Text PDFOncogene
September 2025
Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.
View Article and Find Full Text PDFNat Cell Biol
September 2025
NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China.
The colon exhibits higher propensity for tumour development than ileum. However, the role of immune microenvironment differences in driving this disparity remains unclear. Here, by comparing paired ileum and colon samples from patients with colorectal cancer (CRC) and healthy donors, we identified ileum-enriched CD160CD8 T cells with previously unrecognized characteristics, including resistance to terminal exhaustion and strong clonal expansion.
View Article and Find Full Text PDFNat Cell Biol
September 2025
Department of Oncology, University of Lausanne, Lausanne, Switzerland.
J Immunol
September 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Qidong-Fudan Innovative Institution of Medical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large quantities of subviral particles containing its surface antigen (HBsAg). T cells play a central role in controlling HBV infection but can also mediate liver injury and contribute to disease progression. However, the mechanisms that regulate T-cell responses to eliminate the virus without causing immunopathology during acute HBV infection remain poorly defined.
View Article and Find Full Text PDF