Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury.

Am J Physiol Lung Cell Mol Physiol

Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.

Published: August 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this study was to investigate the changes induced by high tidal volume ventilation (HVTV) in pulmonary expression of micro-RNAs (miRNAs) and identify potential target genes and corresponding miRNA-gene networks. Using a real-time RT-PCR-based array in RNA samples from lungs of mice subjected to HVTV for 1 or 4 h and control mice, we identified 65 miRNAs whose expression changed more than twofold upon HVTV. An inflammatory and a TGF-β-signaling miRNA-gene network were identified by in silico pathway analysis being at highest statistical significance (P = 10(-43) and P = 10(-28), respectively). In the inflammatory network, IL-6 and SOCS-1, regulated by miRNAs let-7 and miR-155, respectively, appeared as central nodes. In TGF-β-signaling network, SMAD-4, regulated by miR-146, appeared as a central node. The contribution of miRNAs to the development of lung injury was evaluated in mice subjected to HVTV treated with a precursor or antagonist of miR-21, a miRNA highly upregulated by HVTV. Lung compliance was preserved only in mice treated with anti-miR-21 but not in mice treated with pre-miR-21 or negative-control miRNA. Both alveolar-arterial oxygen difference and protein levels in bronchoalveolar lavage were lower in mice treated with anti-miR-21 than in mice treated with pre-miR-21 or negative-control miRNA (D(A-a): 66 ± 27 vs. 131 ± 22, 144 ± 10 mmHg, respectively, P < 0.001; protein concentration: 1.1 ± 0.2 vs. 2.3 ± 1, 2.1 ± 0.4 mg/ml, respectively, P < 0.01). Our results show that HVTV induces changes in miRNA expression in mouse lungs. Modulation of miRNA expression can affect the development of HVTV-induced lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423863PMC
http://dx.doi.org/10.1152/ajplung.00370.2011DOI Listing

Publication Analysis

Top Keywords

mice treated
16
lung injury
12
mice subjected
8
subjected hvtv
8
appeared central
8
treated anti-mir-21
8
anti-mir-21 mice
8
treated pre-mir-21
8
pre-mir-21 negative-control
8
negative-control mirna
8

Similar Publications

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.

View Article and Find Full Text PDF

RO8191, a new compound for initiating embryo implantation in mice.

Sci Rep

September 2025

Laboratory of Animal Morphology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Aichi, Japan.

During early pregnancy in mice, leukemia inhibitory factor (LIF) regulates embryo implantation by activating the JAK/STAT3 signaling pathway. The STAT3 pathway has been recognized to play a critical role in embryo implantation; however, it remains unclear whether STAT3 activation alone is sufficient to induce implantation. In this study, we investigated the effects of RO8191, a potential STAT3 activator, on embryo implantation through a series of studies with different mouse models.

View Article and Find Full Text PDF

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF