98%
921
2 minutes
20
Introduction: Xenograft models of epithelial malignancies potentially have greater correlation with clinical end points. We implanted 153 primary non-small cell lung carcinomas into non-obese diabetic-severe combined immunodeficient mice to develop primary lung cancer xenografts. Sixty-three xenografts formed. However, in 19 implantations, tumors consisted of a lymphocyte proliferation without a carcinoma component. We further characterized these lymphomas to determine clinicopathological features associated with their formation.
Methods: Lymphomas were investigated morphologically and by silver in situ hybridization to determine their species of origin. Characterization both of the xenograft lymphomas and the primary NSCLCs from which they were derived included immunohistochemistry for lymphoma markers and Epstein Barr virus Early RNA (EBER) by in situ hybridization. DNA was profiled using the MassARRAY platform; EML4-ALK translocations and lymphocyte infiltration were assessed in the primary tumor. Lymphoma formation was correlated with patient and primary tumor characteristics and survival.
Results: The lymphocytic tumors were EBER positive, human diffuse large B-cell lymphomas (DLBCLs). Significantly more DLBCLs that formed in mice arose in primary lung adenocarcinomas and in epithelial growth factor receptor mutant never smokers. DLBCL formation was not associated with the degree of tumor-infiltrating lymphocytes or EBER-positive lymphocytes in the primary NSCLCs. Patients whose tumors developed DLBCL had longer disease-free survival compared with patients whose tumors formed epithelial xenografts (hazard ratio: 0.44; 95% confidence interval: 0.18 -1.06, Wald p = 0.07), regardless of genotype.
Conclusion: We hypothesize that mechanisms involved in the active suppression of viral antigens may also be involved in the suppression of tumor antigens, and may have resulted in the observed favorable clinical outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/JTO.0b013e3182519d4d | DOI Listing |
Biochem Biophys Res Commun
September 2025
State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China. Electronic address:
Oncolytic viruses (OVs) represent a promising approach for cancer immunotherapy by inducing direct tumor lysis and stimulating antitumor immunity. However, tumor-intrinsic resistance remains a major barrier to their efficacy. In this study, we established an OV-resistant MC38 colon cancer model (MC38) and identified interferon regulatory factor 7 (IRF7), a key regulator of type I interferon signaling, as significantly upregulated in resistant cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea
TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.
View Article and Find Full Text PDFAdv Mater
September 2025
Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Shandong University, Jinan, Shandong, 250012, China.
Natural killer (NK) cells can swiftly and efficiently kill tumor cells with low toxicity and show great potential as anticancer agents. However, the hostile tumor microenvironment (TME) reduces the number and functionality of NK cells, leading to tumor progression and the limited therapeutic effect of adoptively transferred NK cells, especially in solid tumors. Here, via mussel-inspired chemistry and targeted antibody modification strategies, functional piezoelectric nanoparticles are designed to target NK cells, named as αCD56-P@BT (for human) or αNK1.
View Article and Find Full Text PDFBrain Behav Immun
September 2025
A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland. Electronic address:
Microglia, brain-resident immune cells, are involved in pathophysiology of several neurodegenerative diseases, including Parkinson's disease. Given significant species-specific differences in microglia gene expression, particularly in disease-risk genes, as well as the highly reactive nature of these cells, studying human microglia in a whole brain environment is essential. Here, we established a humanized mouse model by transplanting human induced pluripotent stem cell-derived hematopoietic progenitor cells into the striatum of immunodeficient adult mice and injected human alpha-synuclein preformed fibrils to model Parkinson's disease pathology.
View Article and Find Full Text PDFDrug Dev Res
September 2025
Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
The aim of this study was to establish a humanized immune system model in severe combined immunodeficient (SCID) mice, assess dendritic cell (DC) phenotype, and evaluate the therapeutic efficacy of a DC-based vaccine in a bladder cancer model. Bladder cancer was induced in SCID mice by injection of T24 cells, followed by human peripheral blood leukocyte (hu-PBL) inoculation to reconstitute the human immune system. DCs were generated in vitro by culturing hu-PBL for 5 days and matured on the eighth day.
View Article and Find Full Text PDF