A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Isolation of template effects that control the structure and function of nonspherical, biotemplated Pd nanomaterials. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advances in nanotechnology have indicated that the passivant and the inorganic surface play a pivotal role in controlling the structure/function relationship of materials. Beyond standard materials-based methods, bioligands have recently demonstrated the production of unique nanomaterial morphologies for application under ambient conditions for multiple activities, such as catalysis and biosensing. We have recently demonstrated that a biotemplate technique could be employed to produce spherical and linear Pd nanostructures in water using a self-assembling peptide framework. The materials possessed high catalytic reactivity that was controlled by the three-dimensional structure of the composite materials. To investigate the effect of the peptide template on the reactivity of Pd nanostructures, an in depth analysis of the catalytic activity of Pd nanostructures fabricated via truncated templates is presented. The new templates were designed from portions of the original framework, which demonstrated unique synthetic and functionality control. Two different reactions, Stille C-C coupling and 4-nitrophenol reduction, were employed to ascertain the effect of template structure on the reactivity of synthesized Pd nanomaterials via changes in reagent diffusion through the bioscaffold. The results indicate that the peptide framework plays an important role and could be used to tune and optimize the functionality of the final composite materials for the target application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la3015404DOI Listing

Publication Analysis

Top Keywords

peptide framework
8
composite materials
8
isolation template
4
template effects
4
effects control
4
control structure
4
structure function
4
function nonspherical
4
nonspherical biotemplated
4
biotemplated nanomaterials
4

Similar Publications