Homeostatic chemokines guide lymphoma cells to tumor growth-promoting niches within secondary lymphoid organs.

J Mol Med (Berl)

Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, MDC, Berlin 13125, Germany.

Published: November 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interaction between lymphoid tumor cells and their tissue microenvironment is thought to promote dissemination and progression of lymphoma. Those type of interactions consists of at least three cornerstones, among them mesenchymal- or bone marrow-derived stromal cells, cells of the innate or adaptive immune response, and the lymphoma cells themselves. The molecular pathways of crosstalk between the lymphoma cells and their nursing stroma are not well understood and their dissection is challenging because of (1) the complexity of stroma cell subpopulations, (2) kinetic and developmental transitions/switches of stroma composition, and (3) inherent technical difficulties to isolate and analyze defined stroma cell subsets. However, recent studies of bone marrow stroma interaction with leukemia or lymphoma cells have revealed therapeutic targets involved in regulating tumor cell mobilization. Release of tumor cells from their supportive niches could be effectuated by inhibition of homing and retention signals. The present review focuses on the effects of homing receptors and cytokines attributed to lymphoid tissue formation in tumor-stroma interactions within secondary lymphoid tissues. We discuss possible cellular and molecular mechanisms of lymphoma-stroma crosstalk and highlight novel therapeutic strategies based on the disruption of tumor-stroma interaction in secondary lymphoid organs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-012-0906-zDOI Listing

Publication Analysis

Top Keywords

lymphoma cells
16
secondary lymphoid
12
cells
8
lymphoid organs
8
tumor cells
8
stroma cell
8
lymphoma
5
lymphoid
5
stroma
5
homeostatic chemokines
4

Similar Publications

Functional analysis of secreted tissue inhibitor of metalloproteinases-1 from adult human neural stem cells (ahNSCs) for regeneration and neuroprotection.

BMB Rep

September 2025

Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351; Department of Health

The adult human neural stem cell (ahNSC)-conditioned medium (CM) contains various secreted factors that promote tissue repair and neuroprotection. This study aimed to identify the key secreted proteins in ahNSC-CM and investigate the role of tissue inhibitor of metalloproteinases-1 (TIMP-1) in wound healing, angiogenesis, and neuroprotection against oxygenglucose deprivation. Cytokine array and liquid chromatography- tandem mass spectrometry analysis of ahNSC-CM revealed that monocyte chemoattractant protein-1 (MCP-1) and TIMP-1 were highly abundant.

View Article and Find Full Text PDF

Aim: The objective of this study was to describe the disease management landscape for patients with mantle cell lymphoma (MCL) in Japan.

Methods: We conducted a cross-sectional survey with retrospective data capture of physicians and their consulting patients between March and December 2022. Physicians completed patient record forms in a 1:2 ratio: one patient receiving first-line (1 L) treatment and two patients with relapsed/refractory disease, one of whom must have received and discontinued a Bruton's tyrosine kinase inhibitor (BTKi).

View Article and Find Full Text PDF

Adoptive cellular therapies in non-Hodgkin lymphomas.

Best Pract Res Clin Haematol

September 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address: c

Lymphomas are a group of malignant proliferations of B, T or NK-lymphoid cells at different stages of maturation. While they primarily occur in lymph nodes or lymphatic tissues, they can also involve bone marrow, blood, or other organs. Despite advances in treatment, many patients experience relapse, or develop refractory disease, prompting the development of new therapies.

View Article and Find Full Text PDF

Background: In autoimmune disease it is not understood how self-reactive B cells escape immune tolerance checkpoints to produce pathogenic autoantibodies.

Objective: In patients with demyelinating polyneuropathy caused by IgM autoantibodies against myelin associated glycoprotein (MAG) and the sulphated trisaccharide CD57, we aimed to test the hypothesis that B cells making the autoantibody escaped tolerance by acquiring lymphoma driver somatic mutations.

Methods: Deep single-cell RNA, DNA, flow cytometric and antibody specificity analysis of blood from three patients with MAG neuropathy.

View Article and Find Full Text PDF

Human T-cell leukemia virus type I: modulation of viral gene expression and perturbation of host signaling pathways lead to persistent infection.

Curr Opin Virol

September 2025

Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan. Electronic address:

Human T-cell leukemia virus type I (HTLV-1) was the first human pathogenic retrovirus to be discovered. HTLV-1 induces a T-cell malignancy, adult T-cell leukemia-lymphoma (ATL), and inflammatory diseases, such as HTLV-1-associated myelopathy (HAM), HTLV-1 uveitis (HU), and HTLV-1-associated pulmonary disease (HAPD). Importantly, HTLV-1 maintains persistent infection by regulating viral gene expression and disrupting host signaling pathways - activities that are closely linked to its pathogenicity.

View Article and Find Full Text PDF