98%
921
2 minutes
20
The plant hormone auxin is a mobile signal which affects nuclear transcription by regulating the stability of auxin/indole-3-acetic acid (IAA) repressor proteins. Auxin is transported polarly from cell to cell by auxin efflux proteins of the PIN family, but it is not as yet clear how auxin levels are regulated within cells and how access of auxin to the nucleus may be controlled. The Arabidopsis genome contains eight PINs, encoding proteins with a similar membrane topology. While five of the PINs are typically targeted polarly to the plasma membranes, the smallest members of the family, PIN5 and PIN8, seem to be located not at the plasma membrane but in endomembranes. Here we demonstrate by electron microscopy analysis that PIN8, which is specifically expressed in pollen, resides in the endoplasmic reticulum and that it remains internally localized during pollen tube growth. Transgenic Arabidopsis and tobacco plants were generated overexpressing or ectopically expressing functional PIN8, and its role in control of auxin homeostasis was studied. PIN8 ectopic expression resulted in strong auxin-related phenotypes. The severity of phenotypes depended on PIN8 protein levels, suggesting a rate-limiting activity for PIN8. The observed phenotypes correlated with elevated levels of free IAA and ester-conjugated IAA. Activation of the auxin-regulated synthetic DR5 promoter and of auxin response genes was strongly repressed in seedlings overexpressing PIN8 when exposed to 1-naphthalene acetic acid. Thus, our data show a functional role for endoplasmic reticulum-localized PIN8 and suggest a mechanism whereby PIN8 controls auxin thresholds and access of auxin to the nucleus, thereby regulating auxin-dependent transcriptional activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2012.05037.x | DOI Listing |
Trends Plant Sci
September 2025
School of Life Sciences, University of Warwick, CV4 7AL, UK. Electronic address:
Specific accumulation of auxin contributes to the regulation of many developmental processes. Auxin uptake is mediated by AUX1 (AUXIN1) and LAX (Like-AUX1) proteins, but their mechanism of action has been unclear. Recent studies by Yang et al.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
Background: Improving the efficacy of anti-programmed death 1 (PD-1) monoclonal antibody (mAb) therapy remains a major challenge for cancer immunotherapy in non-small cell lung cancer (NSCLC). Gut microbial metabolites can influence immunotherapy efficacy.
Methods: ELISA was used to compare the serum 5-hydroxyindoleacetic acid (5-HIAA) level in patients with NSCLC.
Curr Biol
September 2025
Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 Valencia, Spain. Electronic address:
The end of flowering is determined by the proliferative arrest process (PA), which takes place after the production of a certain number of flowers and fruits and entails the cessation of all reproductive meristem activity. In this manner, PA guarantees the proper size and viability of offspring before plant death. PA regulation involves a complex interplay of genetic, hormonal, and environmental factors.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan.
Epiphytic orchids have evolved specialized adaptive strategies, such as aerial roots with water-absorbing velamen tissues, to cope with water-scarce and nutrient-deficient habitats. Our previous study revealed that the aerial roots of the epiphytic orchid Phalaenopsis aphrodite lack a gravitropic response, raising the possibility that alternative tropic mechanisms may contribute to their adaptation. In this study, we examined the effects of light and moisture on aerial root growth in P.
View Article and Find Full Text PDFMol Plant
September 2025
Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland. Electronic address:
In Arabidopsis roots, xylem-pole-pericycle (XPP) cells exhibit dual cell fates by contributing to both lateral root (LR) and cambium formation. Despite the significant progress in understanding these processes individually, the mechanism deciding between these two fates and its contribution on root architecture and secondary growth remain unknown. Here we combined lineage tracing with molecular genetics to study the regulation of fate plasticity of XPP cell lineage.
View Article and Find Full Text PDF