Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics.

Nanotechnology

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Published: May 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Investigation of solar energy harvesting in hexagonally arranged Si nanowire (NW) arrays is performed through optimizing the structural parameters, such as array periodicity (P), Si NW diameter (D) and length (L). The results demonstrate that there exist wide P and D/P 'windows' for the Si NW arrays, locating around 600 nm and 0.833 (i.e., D=500 nm), respectively, for achieving enhanced light absorption compared to their thin film counterparts with the same thickness, but with much less materials consumption. Calculation of the ultimate efficiency (UE) indicates that the light trapping capability is not monotonically increased with L, and that UE vibration is found when L is >1000 nm. Comparison of the light absorption spectra for hexagonally and squarely arranged Si NW arrays demonstrates that these two most widely employed array symmetries in practice have little impact on the light trapping capability.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/19/194010DOI Listing

Publication Analysis

Top Keywords

solar energy
8
hexagonally arranged
8
arranged nanowire
8
nanowire arrays
8
light absorption
8
light trapping
8
trapping capability
8
energy harnessing
4
harnessing hexagonally
4
arrays
4

Similar Publications

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF

Introduction: Pilots have an increased incidence of cutaneous melanoma compared to the general population; occupational exposure to ultraviolet (UV) radiation is one of several potential risk factors. Cockpit windshields effectively block UVB (280-315 nm) but further analysis is needed for UVA (315-400 nm). The objective of this observational study was to assess transmission of UVA through cockpit windshields and to measure doses of UVA at pilots' skin under daytime flying conditions.

View Article and Find Full Text PDF

In temperate regions, respiratory viruses such as SARS-CoV-2 are better transmitted in winter than in summer. Understanding how the weather is associated with SARS-CoV-2 transmissibility can enhance projections of COVID-19 incidence and improve estimation of the effectiveness of control measures. During the pandemic, transmissibility was tracked by the reproduction number .

View Article and Find Full Text PDF

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

Perylenediimide-Based Donor-Acceptor MOF for Sunlight-Driven Photocatalytic -α-C(sp)-H Bond Functionalization of Tetrahydroisoquinoline.

Inorg Chem

September 2025

Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.

Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.

View Article and Find Full Text PDF