98%
921
2 minutes
20
Genetic variations in certain components of the glucocorticoid receptor (GR) chaperone complex have been associated with the development of stress-related affective disorders and individual variability in therapeutic responses to antidepressants. Mechanisms that link GR chaperoning and stress susceptibility are not well understood. Here, we show that the effects of glucocorticoid hormones on socioaffective behaviors are critically regulated via reversible acetylation of Hsp90, a key component of the GR chaperone complex. We provide pharmacological and genetic evidence indicating that the cytoplasmic lysine deacetylase HDAC6 controls Hsp90 acetylation in the brain, and thereby modulates Hsp90-GR protein-protein interactions, as well as hormone- and stress-induced GR translocation, with a critical impact on GR downstream signaling and behavior. Pet1-Cre-driven deletion of HDAC6 in serotonin neurons, the densest HDAC6-expressing cell group in the mouse brain, dramatically reduced acute anxiogenic effects of the glucocorticoid hormone corticosterone in the open-field, elevated plus maze, and social interaction tests. Serotonin-selective depletion of HDAC6 also blocked the expression of social avoidance in mice exposed to chronic social defeat and concurrently prevented the electrophysiological and morphological changes induced, in serotonin neurons, by this murine model of traumatic stress. Together, these results identify HDAC6 inhibition as a potential new strategy for proresilience and antidepressant interventions through regulation of the Hsp90-GR heterocomplex and focal prevention of GR signaling in serotonin pathways. Our data thus uncover an alternate mechanism by which pan-HDAC inhibitors may regulate stress-related behaviors independently of their action on histones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355377 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5634-11.2012 | DOI Listing |
Free Radic Biol Med
September 2025
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812 USA. Electronic address:
SLC7A11 encodes the glutamate-cystine exchanger xCT, which is a key regulator of intracellular antioxidant capacity and extracellular glutamate levels. We have identified SLC7A11 as a direct target of the glucocorticoid receptor (GR). The GR agonist dexamethasone represses SLC7A11 expression in multiple cell types, from epithelial cells to astrocytes.
View Article and Find Full Text PDFBone
September 2025
Université de Lorraine, CNRS, IMoPA, Nancy, France. Electronic address:
Osteoporosis is an increasing concern in the aging population worldwide, culminating in increased economic concerns and diminished quality of life. Similarly, disturbances of lipid metabolism and adipocytes accumulate more and more in western societies and need solutions. Adipocytes have recently attracted much interest in relation to their endocrine products, one of which is adiponectin, normally associated with beneficial effects on cardiovascular health, inflammation, and cancer.
View Article and Find Full Text PDFNeuroscience
September 2025
Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany; Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing corticosterone (CORT), which binds to glucocorticoid (GR) and mineralocorticoid (MR) receptors in the brain. While stress influences behaviorally relevant network oscillations in limbic regions such as the hippocampus, amygdala, and prefrontal cortex, the direct effects of CORT on these oscillations remain unclear. We examined the acute impact of CORT on anterior cingulate cortex (ACC) oscillations in adult male mice, a hub region for stress and anxiety regulation.
View Article and Find Full Text PDFSci Immunol
September 2025
Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
The skin integrates diverse signals discerned by sensory neurons and immune cells to elicit adaptive responses to a range of stresses. Considering interactions between nervous and immune systems, we examined whether regulatory T (T) cells, which suppress systemic and local inflammation, can modulate activation of peripheral neurons. Acute T cell "loss of function" increased neuronal activation to noxious stimuli independently of their immunosuppressive function.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States.
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality in females. Approximately 20-30% of patients with advanced breast cancer develop brain metastasis. Often, brain metastatic breast cancer (BMBC) exhibits a nonproliferative (dormant) phenotype and therapy resistance due to the unfavorable organ microenvironment.
View Article and Find Full Text PDF