98%
921
2 minutes
20
Subunit D of multisubunit RNA polymerase from many species of archaea is predicted to bind one to two iron-sulfur (Fe-S) clusters, the function of which is unknown. A survey of encoded subunit D in the genomes of sequenced archaea revealed six distinct groups based on the number of complete or partial [4Fe-4S] cluster motifs within domain 3. Only subunit D from strictly anaerobic archaea, including all members of the Methanosarcinales, are predicted to bind two [4Fe-4S] clusters. We report herein the purification and characterization of Methanosarcina acetivorans subunit D in complex with subunit L. Expression of subunit D and subunit L in Escherichia coli resulted in the purification of a D-L heterodimer with only partial [4Fe-4S] cluster content. Reconstitution in vitro with iron and sulfide revealed that the M. acetivorans D-L heterodimer is capable of binding two redox-active [4Fe-4S] clusters. M. acetivorans subunit D deleted of domain 3 (DΔD3) was still capable of co-purifying with subunit L but was devoid of [4Fe-4S] clusters. Affinity purification of subunit D or subunit DΔD3 from M. acetivorans resulted in the co-purification of endogenous subunit L with each tagged subunit D. Overall, these results suggest that domain 3 of subunit D is required for [4Fe-4S] cluster binding, but the [4Fe-4S] clusters and domain 3 are not required for the formation of the D-L heterodimer. However, exposure of two [4Fe-4S] cluster-containing D-L heterodimer to oxygen resulted in loss of the [4Fe-4S] clusters and subsequent protein aggregation, indicating that the [4Fe-4S] clusters influence the stability of the D-L heterodimer and therefore have the potential to regulate the assembly and/or activity of RNA polymerase in an oxidant-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365770 | PMC |
http://dx.doi.org/10.1074/jbc.M111.331199 | DOI Listing |
J Inorg Biochem
September 2025
National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA. Electronic address:
Flavin-based electron bifurcation (FBEB) is employed by microorganisms for controlling pools of redox equivalents by reversibly splitting electron pairs into high- and low-energy levels from an initial midpoint potential. Our ability to harness this phenomenon is crucial for biocatalytic design which is limited by our understanding of energy coupling in the bifurcation system. In Pyrococcus furiosus, FBEB is carried out by the NADH-dependent ferredoxin:NADP-oxidoreductase (NfnSL), coupling the uphill reduction of ferredoxin in NfnL to the downhill reduction of NAD in NfnS from oxidation of NADPH.
View Article and Find Full Text PDFChembiochem
August 2025
Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg CNRS, Strasbourg, 67000, France.
IspH is the last enzyme of the methylerythritol phosphate pathway. It catalyzes the reductive dehydroxylation of (E)-4-hydroxy-3-methyl-but-2-en-1-yl diphosphate into isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are precursors for the biosynthesis of terpenoids, essential molecules for the survival of all living organisms. This pathway is absent in humans, making it a promising target for drug discovery.
View Article and Find Full Text PDFChemistry
September 2025
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
The radical S-adenosylmethionine (SAM) enzyme MiaB is a bifunctional catalyst that mediates the posttranscriptional methylthiolation of N-isopentenyladenosine (iA37) at position 37 in tRNA. Herein, density functional calculations were employed to elucidate the two stages of MiaB-catalyzed modification: methylation and sulfur insertion at the C position of iA37. MiaB contains two iron-sulfur clusters: a radical SAM cluster ([4Fe-4S]) and an auxiliary cluster ([3Fe-4S]).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
X-succinate synthases (XSSs) are glycyl radical enzymes (GREs) that catalyze the addition of hydrocarbons to fumarate via radical chemistry, thereby activating them for microbial metabolism. To date, the only structurally characterized XSS is benzylsuccinate synthase (BSS), which functionalizes toluene. A distinct subclass of XSSs acts on saturated hydrocarbons, which possess much stronger C(sp)-H bonds than toluene, suggesting mechanistic and structural differences from BSS.
View Article and Find Full Text PDFRedox Biol
August 2025
Department of Kidney Transplantation, Zhongshan Hospital, Fudan University, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China; Shanghai Medical Collage, Fudan University, Shanghai, China. Electronic address:
Renal ischemia-reperfusion injury (RIRI), a major contributor to acute kidney injury (AKI) and delayed graft function (DGF), is closely associated with dysregulation of metal ion homeostasis. Although copper and iron metabolism exhibit interconnected regulatory pathways, the temporal dynamics and functional interplay of these metal ions in RIRI pathogenesis remain poorly understood. Our study demonstrates that cuproptosis and ferroptosis, two distinct forms of cell death induced by metal ion overload, occur simultaneously within 6 h after reperfusion.
View Article and Find Full Text PDF