98%
921
2 minutes
20
Context: Previous studies using autologous bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy have demonstrated safety and suggested efficacy.
Objective: To determine if administration of BMCs through transendocardial injections improves myocardial perfusion, reduces left ventricular end-systolic volume (LVESV), or enhances maximal oxygen consumption in patients with coronary artery disease or LV dysfunction, and limiting heart failure or angina.
Design, Setting, And Patients: A phase 2 randomized double-blind, placebo-controlled trial of symptomatic patients (New York Heart Association classification II-III or Canadian Cardiovascular Society classification II-IV) with a left ventricular ejection fraction of 45% or less, a perfusion defect by single-photon emission tomography (SPECT), and coronary artery disease not amenable to revascularization who were receiving maximal medical therapy at 5 National Heart, Lung, and Blood Institute-sponsored Cardiovascular Cell Therapy Research Network (CCTRN) sites between April 29, 2009, and April 18, 2011.
Intervention: Bone marrow aspiration (isolation of BMCs using a standardized automated system performed locally) and transendocardial injection of 100 million BMCs or placebo (ratio of 2 for BMC group to 1 for placebo group).
Main Outcome Measures: Co-primary end points assessed at 6 months: changes in LVESV assessed by echocardiography, maximal oxygen consumption, and reversibility on SPECT. Phenotypic and functional analyses of the cell product were performed by the CCTRN biorepository core laboratory.
Results: Of 153 patients who provided consent, a total of 92 (82 men; average age: 63 years) were randomized (n = 61 in BMC group and n = 31 in placebo group). Changes in LVESV index (-0.9 mL/m(2) [95% CI, -6.1 to 4.3]; P = .73), maximal oxygen consumption (1.0 [95% CI, -0.42 to 2.34]; P = .17), and reversible defect (-1.2 [95% CI, -12.50 to 10.12]; P = .84) were not statistically significant. There were no differences found in any of the secondary outcomes, including percent myocardial defect, total defect size, fixed defect size, regional wall motion, and clinical improvement.
Conclusion: Among patients with chronic ischemic heart failure, transendocardial injection of autologous BMCs compared with placebo did not improve LVESV, maximal oxygen consumption, or reversibility on SPECT.
Trial Registration: clinicaltrials.gov Identifier: NCT00824005.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600947 | PMC |
http://dx.doi.org/10.1001/jama.2012.418 | DOI Listing |
Exp Physiol
September 2025
Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
High-altitude training is widely adopted by endurance athletes with the aim of increasing total haemoglobin mass (tHb) and thereby endurance exercise performance. However, divergent effects on tHb and exercise performance have been reported in athletes commencing altitude camps with initial high baseline levels for tHb, questioning the efficacy of in-season interventions in elite athletes. Therefore, haematological adaptations and exercise performance were evaluated in 12 elite cyclists completing an in-season 'Live High-Train High' (LHTH) altitude camp (21 days at 3000 m) immediately after participating in the national championships.
View Article and Find Full Text PDFFront Pharmacol
August 2025
School of Pharmacy, Nantong University, Nantong, China.
Photodynamic therapy (PDT) induces cancer cell death by utilizing photosensitizers to generate reactive oxygen species (ROS) upon light irradiation, which in turn trigger oxidative stress. However, the therapeutic efficacy of PDT is constrained by the short lifetimes and limited diffusion range of ROS, resulting in suboptimal outcomes and off-target effects. Specific organelle targeting, facilitated by rationally engineered photosensitizers and nanoplatforms with precise drug delivery capabilities that activate organelle-mediated cell death pathways, can maximize localized oxidative damage, enhance therapeutic efficacy, and minimize systemic toxicity.
View Article and Find Full Text PDFInt J Sports Physiol Perform
September 2025
Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
Purpose: To assess the association between skeletal-muscle endurance performance and mitochondrial oxidative capacity of the hamstrings as respectively measured by biomechanical and physiological standards.
Methods: Nineteen (12 men and 7 women) healthy, young, recreationally active participants enrolled in our study. Participant characteristics comprised a mean and SD age of 21.
Turk J Pediatr
September 2025
Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.
Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.
Methods: Fifty-eight cwCF were included.
PLoS One
September 2025
Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
Objective: This study investigates the mechanisms behind exercise capacity in adults with type 2 diabetes mellitus (T2DM), focusing on central and peripheral components, as described by the Fick equation.
Methods: A cross-sectional study of 141 adults with T2DM was conducted, using cardiopulmonary exercise testing, near-infrared spectroscopy (NIRS) and exercise echocardiography. Participants with sufficient-quality NIRS data were stratified into tertiles based on percentage predicted VO₂peak.