98%
921
2 minutes
20
Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288046 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031374 | PLOS |
J Fish Biol
September 2025
National Oceanic and Atmospheric Administration/NOS/NCCOS/MSE/Biogeography Branch, Silver Spring, Maryland, USA.
Despite snappers' (family Lutjanidae) commercial and ecological significance, knowledge gaps remain regarding life history, ontogeny and ecology across their range in the Caribbean and south Atlantic. There is also a need to explore the efficacy of marine protected areas (MPAs) as a tool for enhancing nursery and spawning habitat conservation for multiple snapper species. Additionally, even as hurricanes and sargassum inundation have become rising issues for coastal communities, there is a scarcity of data on how commercially important species respond to these environmental disturbances.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Department of Marine Sciences, University of Puerto Rico at Mayagüez, P.O. Box 9000, Mayagüez, PR 00681 USA.
Unlabelled: The queen snapper ( Valenciennes in Cuvier & Valenciennes, 1828) is a deep-sea snapper whose commercial importance continues to increase in the US Caribbean. However, little is known about the biology and ecology of this species. In this study, the presence of a fine-scale population structure and genetic diversity of queen snapper from Puerto Rico was assessed through 16,188 SNPs derived from the Restriction site Associated DNA Sequencing (RAD-Seq) technique.
View Article and Find Full Text PDFZoolog Sci
August 2025
Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan,
Anemonefish have a characteristic vertical white barred color pattern on an orange background made by a specific distribution of three types of pigment cells: melanophores, xanthophores, and iridophores. This color pattern is an interesting alternative model to zebrafish to understand the cellular and molecular basis of complex color pattern formation. Using transmission electron microscopic observations, we have investigated the pigment cell composition in the skin of the anemonefish and found that: 1) white skin comprises iridophores and isolated melanophores; 2) orange skin contains xanthophores and scattered melanophores; and 3) black skin encompasses melanophores only.
View Article and Find Full Text PDFIntegr Org Biol
July 2025
School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.
Across teleosts, feeding by biting substrate-attached prey has evolved multiple times and is associated with convergent morphologies that include a deep body and an elongated, tapered head. However, the functional role of these morphologies in substrate-biting fish is not established. Here, we tested the hypothesis that these morphologies function as control surfaces that affect feeding kinematics during biting.
View Article and Find Full Text PDFGradients in light, temperature and hydrodynamics associated with water depth are important determinants of ecological communities in marine environments. While depth specialism in coral reef fishes has been extensively studied in shallow (< 30 m) coastal reef systems, less is known about how depth-associated drivers operate over the larger depth ranges on isolated pinnacle and seamount reef systems, which are known to support abundant assemblages of predatory fishes. Using remotely operated vehicles, we surveyed predatory fish assemblages across a 100 m depth gradient on three seamount reefs in the Coral Sea.
View Article and Find Full Text PDF