Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The 26 S proteasome is a 2.5-MDa molecular machine that degrades ubiquitinated proteins in eukaryotic cells. It consists of a proteolytic core particle and two 19 S regulatory particles (RPs) composed of 6 ATPase (Rpt) and 13 non-ATPase (Rpn) subunits. Multiple proteasome-dedicated chaperones facilitate the assembly of the proteasome, but little is known about the detailed mechanisms. Hsm3, a 19 S RP dedicated chaperone, transiently binds to the C-terminal domain of the Rpt1 subunit and forms a tetrameric complex, Hsm3-Rpt1-Rpt2-Rpn1, during maturation of the ATPase ring of 19 S RP. To elucidate the structural basis of Hsm3 function, we determined the crystal structures of Hsm3 and its complex with the C-terminal domain of the Rpt1 subunit (Rpt1C). Hsm3 has a C-shaped structure that consists of 11 HEAT repeats. The structure of the Hsm3-Rpt1C complex revealed that the interacting surface between Hsm3 and Rpt1 is a hydrophobic core and a complementary charged surface. Mutations in the Hsm3-Rpt1 surface resulted in the assembly defect of the 26 S proteasome. Furthermore, a structural model of the Hsm3-Rpt ring complex and an in vitro binding assay suggest that Hsm3 can bind Rpt2 in addition to Rpt1. Collectively, our results provide the structural basis of the molecular functions of Hsm3 for the RP assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320968PMC
http://dx.doi.org/10.1074/jbc.M112.345876DOI Listing

Publication Analysis

Top Keywords

structural basis
12
c-terminal domain
8
domain rpt1
8
rpt1 subunit
8
hsm3
7
structural
4
basis specific
4
specific recognition
4
recognition rpt1p
4
rpt1p atpase
4

Similar Publications

Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.

View Article and Find Full Text PDF

The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.

View Article and Find Full Text PDF

The μ-opioid receptor (μOR) is the primary drug target of opioid analgesics such as morphine and fentanyl. Activation of μORs in the central nervous system inhibits ascending pain signaling to the cortex, thereby producing analgesic effects. However, the clinical use of opioid analgesics is severely limited by adverse side effects, including respiratory depression, constipation, addiction, and the development of tolerance.

View Article and Find Full Text PDF

Phycobilisome (PBS) is a water-soluble light-harvesting supercomplex found in cyanobacteria, glaucophytes, and rhodophytes. PBS interacts with photosynthetic reaction centers, specifically photosystems II and I (PSII and PSI), embedded in the thylakoid membrane. It is widely accepted that PBS predominantly associates with PSII, which functions as the initial complex in the linear electron transport chain.

View Article and Find Full Text PDF

Introduction: A 264-d isolation simulation, SFINCSS-99, was conducted in Moscow to replicate typical scenarios on an orbital space station. One long-term group of four Russian crewmembers occupied the isolation complex for most of the duration (240 d), while two international groups of four each spent 110 d successively at the complex. Additionally, there were several short visits by medical personnel.

View Article and Find Full Text PDF