Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The current study presents an organotypic rat midbrain slice culture that served as a consistent and informative framework, where the STN neurons and their interconnectivity were closely examined with respect to electrophysiological and pharmacological properties. From multi-electrode array recordings, it was found that the majority of STN neurons spontaneously fired in bursts rather than tonically under control conditions, and the neural activity between pairs of burst-firing STN neurons was tightly correlated. This spontaneous synchronized burst firing was also affected by a glutamate receptor antagonist, yet unaffected by a GABA receptor antagonist. Moreover, even when the STN was isolated from all its known external inputs, spontaneous synchronized burst firing was still observed under control conditions and consistently switched to tonic firing following the application of a glutamate receptor antagonist. Therefore, the results indicated the existence of glutamatergic projections to the STN in the slice preparation, and these excitatory synaptic connections appeared to originate from axon collaterals within the STN rather than other basal ganglia nuclei. It could be concluded that the STN neurons and their interconnectivity are essential requirements in the rat brain slice preparation to produce spontaneous synchronized burst firing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2012.01.004 | DOI Listing |