98%
921
2 minutes
20
Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321604 | PMC |
http://dx.doi.org/10.1038/mt.2011.308 | DOI Listing |
J Transl Med
August 2025
Department of Ophthalmology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.
Background: Retinal degeneration (RD) is a chronic retinopathy that characterized by the progressive photoreceptor apoptosis and visual impairments. However, due to the complicated pathogenesis of RD, there is no effective treatment at present. This study intends to verify the therapeutic effect and mechanism of stanniocalcin-1 (STC-1) in the sodium iodate (NaIO)-induced RD mouse model.
View Article and Find Full Text PDFAm J Ophthalmol
July 2022
Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK).
Purpose: To investigate the effect of stanniocalcin-1 (STC-1), a secreted polypeptide exhibiting multiple functions in cell survival and death, on photoreceptor degeneration in a porcine model of retinitis pigmentosa (RP).
Methods: P23H transgenic pigs (TG P23H) and wild-type hybrid littermates were obtained from the National Swine Resource and Research Center. Human recombinant STC-1 was injected intravitreally every 2 weeks from postnatal day 15 (P15) to P75.
Invest Ophthalmol Vis Sci
February 2018
Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Temple, Texas, United States.
Purpose: The purpose of this study was to investigate the impact of stanniocalcin-1 (STC-1), a photoreceptor-protective glycoprotein, on the development of choroidal neovascularization (CNV) in relation to VEGF and its main receptor (VEGFR2) expression after laser injury.
Methods: In rats, CNV was induced by laser photocoagulation in both eyes, followed by intravitreal injection of STC-1 in the right eye and vehicle or denatured STC-1 injection in the left eye as control. Two weeks after laser injury, fundus autofluorescence (FAF) imaging and fundus fluorescein angiography (FFA) were performed.
Exp Eye Res
December 2017
Department of Ophthalmology, University of California, San Francisco, CA 94143, USA. Electronic address:
Retinal degenerations, including age-related macular degeneration and the retinitis pigmentosa family of diseases, are among the leading causes of legal blindness in the United States. We previously found that Stanniocalcin-1 (STC-1) reduced photoreceptor loss in the S334ter-3 and Royal College of Surgeons rat models of retinal degeneration. The results were attributed in part to a reduction in oxidative stress.
View Article and Find Full Text PDFPLoS One
December 2013
Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea.
Optic neuropathy including glaucoma is one of the leading causes of irreversible vision loss, and there are currently no effective therapies. The hallmark of pathophysiology of optic neuropathy is oxidative stress and apoptotic death of retinal ganglion cells (RGCs), a population of neurons in the central nervous system with their soma in the inner retina and axons in the optic nerve. We here tested that an anti-apoptotic protein stanniocalcin-1 (STC-1) can prevent loss of RGCs in the rat retina with optic nerve transection (ONT) and in cultures of RGC-5 cells with CoCl2 injury.
View Article and Find Full Text PDF