Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present a dynamic neural network (DNN) solution for detecting instances of freezing-of-gait (FoG) in Parkinson's disease (PD) patients while they perform unconstrained and unscripted activities. The input features to the DNN are derived from the outputs of three triaxial accelerometer (ACC) sensors and one surface electromyographic (EMG) sensor worn by the PD patient. The ACC sensors are placed on the shin and thigh of one leg and on one of the forearms while the EMG sensor is placed on the shin. Our FoG solution is architecturally distinct from the DNN solutions we have previously designed for detecting dyskinesia or tremor. However, all our DNN solutions utilize the same set of input features from each EMG or ACC sensor worn by the patient. When tested on experimental data from PD patients performing unconstrained and unscripted activities, our FoG detector exhibited 83% sensitivity and 97% specificity on a per-second basis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2011.6091367 | DOI Listing |