Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition.

PLoS One

Academic Unit of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.

Published: April 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Induction of altered phenotypes during development in response to environmental input involves epigenetic changes. Phenotypic traits can be passed between generations by a variety of mechanisms, including direct transmission of epigenetic states or by induction of epigenetic marks de novo in each generation. To distinguish between these possibilities we measured epigenetic marks over four generations in rats exposed to a sustained environmental challenge. Dietary energy was increased by 25% at conception in F0 female rats and maintained at this level to generation F3. F0 dams showed higher pregnancy weight gain, but lower weight gain and food intake during lactation than F1 and F2 dams. On gestational day 8, fasting plasma glucose concentration was higher and β-hydroxybutyrate lower in F0 and F1 dams than F2 dams. This was accompanied by decreased phosphoenolpyruvate carboxykinase (PEPCK) and increased PPARα and carnitine palmitoyl transferase-1 mRNA expression. PEPCK mRNA expression was inversely related to the methylation of specific CpG dinucleotides in its promoter. DNA methyltransferase (Dnmt) 3a2, but not Dnmt1 or Dnmt3b, expression increased and methylation of its promoter decreased from F1 to F3 generations. These data suggest that the regulation of energy metabolism during pregnancy and lactation within a generation is influenced by the maternal phenotype in the preceding generation and the environment during the current pregnancy. The transgenerational effects on phenotype were associated with altered DNA methylation of specific genes in a manner consistent with induction de novo of epigenetic marks in each generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227644PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028282PLOS

Publication Analysis

Top Keywords

epigenetic marks
12
weight gain
8
mrna expression
8
methylation specific
8
epigenetic
5
generation
5
progressive transgenerational
4
transgenerational changes
4
changes offspring
4
offspring phenotype
4

Similar Publications

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.

View Article and Find Full Text PDF

The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells.

View Article and Find Full Text PDF

Bivalve mollusks represent a taxonomically and economically significant clade within Mollusca. However, the regulatory mechanisms governing their embryonic development remain poorly characterized. The dwarf surf clam ( ), characterized by a short generation time and high fecundity, has recently gained recognition as an ideal model system for bivalve embryological research.

View Article and Find Full Text PDF

Advanced maternal age increases the risk of pregnancy complications due, in part, to changes in the uterine environment. Here, we show that uterine aging in mice is associated with a progressive increase in transcriptional variation, accompanied by a notable accumulation of activating histone marks at multiple genomic loci. Importantly, the transcriptional signatures of uterine aging differ substantially from senescence markers associated with organismal aging.

View Article and Find Full Text PDF

In mammals, chromosome-wide regulatory mechanisms ensure a balance of X-linked gene dosage between males (XY) and females (XX). In female cells, expression of genes from one of the two X chromosomes is curtailed, with selective accumulation of Xist-RNA, Xist-associated proteins, specific histone modifications (for example, H3K27me3) and Barr body formation observed throughout interphase. Here we show, using chromosome flow-sorting, that during mitosis, Xist-associated proteins dissociate from inactive X (Xi) chromosomes, while high levels of H3K27me3 and increased compaction of the Xi relative to active X (Xa), are retained.

View Article and Find Full Text PDF