Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro.

J Struct Biol

European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany.

Published: May 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, electron tomograms of plunge-frozen isolated chromatin in both open and compacted form were recorded. We have resolved individual nucleosomes in these tomograms in order to provide a 3D view of the arrangement of nucleosomes within chromatin fibers at different compaction states. With an optimized template matching procedure we obtained accurate positions and orientations of nucleosomes in open chromatin in "low-salt" conditions (5 mM NaCl). The mean value of the planar angle between three consecutive nucleosomes is 70°, and the mean center-to-center distance between consecutive nucleosomes is 22.3 nm. Since the template matching approach was not effective in crowded conditions, for nucleosome detection in compact fibers (40 mM NaCl and 1 mM MgCl(2)) we developed the nucleosome detection procedure based on the watershed algorithm, followed by sub-tomogram alignment, averaging, and classification by Principal Components Analysis. We find that in compact chromatin the nucleosomes are arranged with a predominant face-to-face stacking organization, which has not been previously shown for native isolated chromatin. Although the path of the DNA cannot be directly seen in compact conditions, it is evident that the nucleosomes stack with their dyad axis aligned in forming a "double track" conformation which is a consequence of DNA joining adjacent nucleosome stacks. Our data suggests that nucleosome stacking is an important mechanism for generating chromatin compaction in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2011.11.020DOI Listing

Publication Analysis

Top Keywords

nucleosomes
8
compact chromatin
8
isolated chromatin
8
template matching
8
consecutive nucleosomes
8
nucleosome detection
8
chromatin
7
nucleosomes stacked
4
stacked aligned
4
aligned dyad
4

Similar Publications

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF

Introduction: We previously reported that sodium-glucose co-transporter 2 (SGLT-2) was ectopically overexpressed in adult T-cell leukemia (ATL) cells notably in aggressive type but in indolent type, and widely-used anti-diabetic SGLT-2 inhibitors (SGLT-2i) considerably attenuated proliferation of leukemic cells.

Methods: We performed retrospective analyses for 10 years to see whether SGLT-2i would prevent aggressive transformation in patients with indolent type ATL accompanied by diabetes. Nucleosome occupancy in the promotor region of the gene was also assessed to explore the possible involvement of epigenetic modification in such an ectopic overexpression.

View Article and Find Full Text PDF

Using an in situ nucleosome stability assay based on salt extraction, we identified distinct stability features of H2A.Z-containing nucleosomes linked to alternative interactions of the histone variant's C-terminal tail (Imre et al., Nat.

View Article and Find Full Text PDF

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF