Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have fabricated hexagonal close-packed (hcp) Ni nanoparticles covered by a face-centered cubic (fcc) Ni surface layer by polyol method. The magnetic properties have been investigated as a function of temperature and applied magnetic field. The magnetic behavior reveals that the system should be divided magnetically into three distinct phases with different origins. The fcc Ni phase on the shell contributes to the superparamagnetism through a wide temperature range up to 360 K. The hcp Ni phase at the core is associated with antiferromagnetic nature below 12 K. These observations are in good agreement with the X-ray absorption spectroscopy and magnetic circular dichroism measurements. In our particular case, the unique hcp core and fcc shell structure gives rise to an additional anomaly at 20 K in the zero-field-cooled magnetization curve. Its position is barely affected by the magnetic field but its structure disappears above 30 kOe, showing a metamagnetic transition in the magnetization versus magnetic field curve. This new phase originates from the magnetic exchange at the interface between the hcp and fcc Ni sublattices.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.4488DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
magnetic properties
8
hcp core
8
core fcc
8
fcc shell
8
shell structure
8
magnetic
7
hcp
5
fcc
5
interface magnetic
4

Similar Publications

Recent Advances in Metal-Organic Frameworks for Electromagnetic Wave Absorption.

Research (Wash D C)

September 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.

View Article and Find Full Text PDF

Coordination polymers (CPs) are versatile materials formed by metal ions and organic ligands, offering a broad range of structural and functional possibilities. Phosphonates and phosphinates are particularly attractive ligands for CPs due to their multiple binding sites, varied coordination geometries, and ability to form robust network structures. Phosphonates, considered harder ligands, form strong bonds with hard metals such as Fe, while phosphinates offer additional versatility due to the varied pendant groups on phosphorus.

View Article and Find Full Text PDF

Neutral iron(III) and iron(II) complexes based on the pyruvic acid thiosemicarbazone (Hthpy) ligand [Fe(Hthpy)(thpy)] (1) and [Fe(Hthpy)] (2) were synthesized, and deeper insights into magneto-structural correlation were gained by FT-IR spectroscopy, single crystal X-ray crystallography, dc magnetic characterization, Fe Mössbauer spectroscopy, and DFT calculations. The X-ray structures of complex 1 were established for the HS ( = 5/2) state at 295 K and the LS ( = 1/2) state at 150 K. The crystal packing of 1 at these temperatures corresponds to the triclinic 1̄ symmetry and contains pairs of [Fe(Hthpy)(thpy)] complexes interconnected by a shortened S⋯S contact.

View Article and Find Full Text PDF

Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.

View Article and Find Full Text PDF

Lightweight hybrid Mamba2 for unsupervised medical image registration.

Med Phys

September 2025

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.

View Article and Find Full Text PDF