98%
921
2 minutes
20
A laboratory experimental campaign was carried out in order to assess the optimal configuration for the anaerobic digestion of a mixture of sweet corn and ensiled maize. Batch hydrolysis tests were conducted at 35 and 55 °C and at four different particle sizes (2, 5, 20 and 50 mm) obtained by manual chopping and sieving. Chemical pre-treatment by 24 h incubation at various acid and alkaline pH was also considered for its potential to increase the maize methane yield. Results suggest that the hydrolytic phase proceeds significantly faster under thermophilic conditions. Significant differences in the solubilization rate were also observed when comparing coarse (20-50 mm) with fine (2-5 mm) particles, while 2 and 5 mm particles were solubilized at similar rates. No advantages from the chemical pre-treatment, in terms of solubilization efficiency and biomethanization potential were observed. According to these preliminary results, a two-stage semi-continuous laboratory plant consisting of a thermophilic hydrolytic reactor followed by a mesophilic methanogenic reactor was operated for 110 days. Steady state loading parameters were: influent concentration (maize mixture diluted in tap water) of 46 g VS/L, hydraulic retention time of 31 d, organic loading rate of 1.5 g VS/L/d. Alkalinity was dosed to the methanogenic reactor to avoid pH drops. Collected data allowed the average biodegradation efficiency to be estimated at around 60-65%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2011.659 | DOI Listing |
PLoS One
September 2025
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America.
Nitrogen (N) fixation with non-thermal plasmas has been proposed as a sustainable alternative to meet growing N fertilizer demands for agriculture. This technology generates Plasma Activated Water (PAW) with a range of chemical compositions, including different concentrations of nitrate (NO₃⁻) and hydrogen peroxide (H2O2), among other compounds. Potential use of PAW as an effective crop fertilizer necessitates a robust understanding of the underlying biology of the plant, which is not yet available.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Loess Science, Shaanxi Key Laboratory of AMS Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China. Electronic address:
Pu and Sr are highly important radionuclides in the environment, which can accumulate in the human body through the food chain and cause radiation exposure. With the continuous discharge of treated nuclear contamination water from the Fukushima Daiichi nuclear power plant, it is crucial to investigate and monitor the levels of Pu and Sr in seafood. However, it is still a challenge to determine Pu and Sr in seafood at environmental levels, owing to their extremely low concentrations, labor-intensive and time-consuming pre-treatment for large-sized samples.
View Article and Find Full Text PDFWaste Manag
September 2025
Chemical Engineering Department, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, the Netherlands. Electronic address:
The pyrolysis of polyolefin (PO)-rich mixed plastic waste represents a promising pathway for recycling plastic waste into liquid hydrocarbons, particularly in the naphtha range, for use as a refinery input. However, assessments of naphtha production from complex plastic waste remain limited. This work systematically investigates the batch pyrolysis of a PO-rich mixed plastic waste derived from a sorted household waste stream (DKR-350) using Design of Experiments (DoE) and response surface methodology (RSM).
View Article and Find Full Text PDFPlants (Basel)
August 2025
Department of Bioscience and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, IS, Italy.
L. is an important aromatic plant traditionally used in folk medicine since ancient times. Its growing interest for the scientific community is mainly attributed to its distinctive chemical profile, which includes bioactive compounds, such as polyphenols (phenolic acids and flavonoids) and volatile compounds (essential oil).
View Article and Find Full Text PDFMicroorganisms
August 2025
Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
Valorization of ricotta cheese exhausted whey (RCEW), a dairy by-product generated in large quantities worldwide, is essential to mitigate its environmental impact and unlock its economic potential. This study explores the use of RCEW as a substrate for polyhydroxyalkanoate (PHA) production by DSM 1123. The substrate was characterized by low protein and fat contents and a relevant lactose concentration (3.
View Article and Find Full Text PDF