Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autosomal Dominant Hypercholesterolemia (ADH) is caused by LDLR and APOB mutations. However, genetically diagnosed ADH patients do not always exhibit the expected hypercholesterolemic phenotype. Of 4,669 genetically diagnosed ADH patients, identified through the national identification screening program for ADH, 75 patients (1.6%) had LDL-cholesterol (LDL-C) levels below the 50th percentile for age and gender prior to lipid-lowering therapy. The genes encoding APOB, PCSK9, and ANGPTL3 were sequenced in these subjects to address whether monogenic dominant loss-of-function mutations underlie this paradoxical phenotype. APOB mutations, resulting in truncated APOB, were found in five (6.7%) probands, reducing LDL-C by 56%. Rare variants in PCSK9, and ANGPTL3 completely correcting the hypercholesterolemic phenotype were not found. The common variants p.N902N, c.3842+82T>A, p.D2312D, and p.E4181K in APOB, and c.1863+94A>G in PCSK9 were significantly more prevalent in our cohort compared to the general European population. Interestingly, 40% of our probands carried at least one minor allele for all four common APOB variants compared to 1.5% in the general European population. While we found a low prevalence of rare variants in our cohort, our data suggest that regions in proximity of the analyzed loci, and linked to specific common haplotypes, might harbor additional variants that correct an ADH phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.21660DOI Listing

Publication Analysis

Top Keywords

pcsk9 angptl3
12
adh patients
12
apob pcsk9
8
autosomal dominant
8
apob mutations
8
genetically diagnosed
8
diagnosed adh
8
hypercholesterolemic phenotype
8
rare variants
8
general european
8

Similar Publications

Cardiovascular disease remains a major global health challenge, with dyslipidaemia being a key modifiable risk factor. While low density lipoprotein cholesterol (LDL-C) is the primary target for lipid-lowering therapies, recent evidence highlights the importance of triglycerides, apolipoprotein B (apoB), and lipoprotein(a) [Lp(a)] for residual cardiovascular risk. Current lipid-lowering therapies target key enzymes and proteins involved in cholesterol and lipid metabolism.

View Article and Find Full Text PDF

An increasing body of research indicates an association between lipid-lowering medications and sensorineural hearing loss (SNHL), although there is still controversy. Therefore, the aim of this study is to investigate the genetic correlation between different lipid-lowering therapeutic gene targets and SNHL. The genetic association between lipids, lipid-lowering drug target genes, and SNHL was analyzed using a 2-sample Mendelian randomization approach.

View Article and Find Full Text PDF

Despite the well-established benefits of statin therapy in reducing atherosclerotic cardiovascular disease (ASCVD) risk, many patients fail to achieve recommended low-density lipoprotein cholesterol (LDL-C) targets or experience statin intolerance, necessitating alternative approaches. This review examines advances in non-statin lipid-lowering therapies, focusing on proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (monoclonal antibodies and inclisiran), bempedoic acid, and other non-statin lipid medications. We evaluate their mechanisms of action, clinical efficacy, and safety profiles on the basis of landmark trials.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) remains the leading cause of mortality worldwide, with hypercholesterolemia identified as a major, but modifiable risk factor. This review serves as the second part of a comprehensive analysis of dyslipidemia management. The first installment laid the groundwork by detailing the key pathophysiological mechanisms of lipid metabolism, the development of atherosclerosis, major complications of hyperlipidemia, and the importance of cardiovascular risk assessment in therapeutic decision-making.

View Article and Find Full Text PDF

Hypertriglyceridemia is mostly associated with secondary conditions in children but can also result from monogenic disorders. The most prevalent genes identified as the underlying reason for impaired clearance of triglycerides from plasma by genome-wide association studies are the LPL, APOC2, APOA5, LMF1, APOE and GPIHBP1 genes. In this study, 26 pediatric patients with primary hypertriglyceridemia, 12 of whom were severe, were screened for monogenic causes via a next-generation sequencing panel that included 25 genes, namely, ABCA1, ABCG5, ABCG8, ANGPTL3, APOA1, APOA5, APOB, APOC2, APOC3, APOE, CETP, GPD1, GPIHBP1, LCAT, LDLR, LDLRAP1, LIPA, LIPC, LMF1, LPL, MTTP, NPC1L1, OSBPL5, PCSK9 and SAR1B.

View Article and Find Full Text PDF