98%
921
2 minutes
20
So far, two genes associated with familial melanoma have been identified, accounting for a minority of genetic risk in families. Mutations in CDKN2A account for approximately 40% of familial cases, and predisposing mutations in CDK4 have been reported in a very small number of melanoma kindreds. Here we report the whole-genome sequencing of probands from several melanoma families, which we performed in order to identify other genes associated with familial melanoma. We identify one individual carrying a novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K; rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription factor (MITF). Although the variant co-segregated with melanoma in some but not all cases in the family, linkage analysis of 31 families subsequently identified to carry the variant generated a log of odds (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate risk variant. Consistent with this, the E318K variant was significantly associated with melanoma in a large Australian case-control sample. Likewise, it was similarly associated in an independent case-control sample from the United Kingdom. In the Australian sample, the variant allele was significantly over-represented in cases with a family history of melanoma, multiple primary melanomas, or both. The variant allele was also associated with increased naevus count and non-blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele had impaired sumoylation and differentially regulated several MITF targets. These data indicate that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome sequencing to identify novel rare variants associated with disease susceptibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266855 | PMC |
http://dx.doi.org/10.1038/nature10630 | DOI Listing |
Biomol Biomed
September 2025
Clinical Research Directorate, Ignacio Chávez National Institute of Cardiology, Mexico City, Mexico.
Rheumatoid arthritis (RA) is a chronic autoimmune disease in which dysregulated interferon regulatory factor 5 (IRF5) may amplify pro-inflammatory pathways; prior genetic studies of IRF5 single-nucleotide variants (SNVs) in RA are inconsistent across populations and have not included mestizo Mexicans or evaluated rs59110799 in RA. We aimed to test whether four IRF5 SNVs (rs2004640G/T, rs2070197T/C, rs10954213G/A, rs59110799G/T) confer susceptibility to RA in women from Central Mexico. In a case-control study of 239 women with RA and 231 female controls (all self-identified Mexican-Mestizos, ≥3 generations), genotyping was performed by real-time PCR with TaqMan® probes; 80% of samples were duplicated (100% concordance) and control genotypes conformed to Hardy-Weinberg equilibrium.
View Article and Find Full Text PDFBlood Neoplasia
November 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
Chronic myelomonocytic leukemia (CMML) is an aggressive hematologic neoplasm characterized by an expansion of CD123 monocytes and plasmacytoid dendritic cells (pDCs). pDC bone marrow clusters in CMML have been associated with higher rates of acute myeloid leukemia transformation. We evaluated tagraxofusp, a CD123-targeted therapy, in a phase 1/2 trial for patients with CMML.
View Article and Find Full Text PDFFront Immunol
September 2025
Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Parque Tecnológico de Ciencias de la Salud (PTS), Granada, Spain.
Introduction: The COVID-19 pandemic had significant global public health consequences, affecting over 200 countries and regions by 2020. The development and efficacy of specific vaccines, such as the mRNA-1273 (Spikevax) vaccine developed by Moderna Inc., have substantially reduced the impact of the pandemic and mitigated its consequences.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Advances in Oxford Nanopore Technologies (ONT) with the introduction of the r10.4.1 flow cell have reduced the sequencing error rates to <1%.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2025
BGI Research, Shenzhen 518083, China.
Next-generation sequencing has greatly advanced genomics, enabling large-scale studies of population genetics and complex traits. Genomic DNA (gDNA) from white blood cells has traditionally been the main data source, but cell-free DNA (cfDNA), found in bodily fluids as fragmented DNA, is increasingly recognized as a valuable biomarker in clinical and genetic studies. However, a direct comparison between cfDNA and gDNA has not been fully explored.
View Article and Find Full Text PDF