98%
921
2 minutes
20
Osteoblast differentiation is regulated by the presence of collagen type I (COL I) extracellular matrix (ECM). We have recently demonstrated that Factor XIIIA (FXIIIA) transglutaminase (TG) is required by osteoblasts for COL I secretion and extracellular deposition, and thus also for osteoblast differentiation. In this study we have further investigated the link between COL I and FXIIIA, and demonstrate that COL I matrix increases FXIIIA levels in osteoblast cultures and that FXIIIA is found as cellular (cFXIIIA) and extacellular matrix (ecmFXIIIA) forms. FXIIIA mRNA, protein expression, cellular localization and secretion were enhanced by ascorbic acid (AA) treatment and blocked by dihydroxyproline (DHP) which inhibits COL I externalization. FXIIIA mRNA was regulated by the MAP kinase pathway. Secretion of ecmFXIIIA, and its enzymatic activity in conditioned medium, were also decreased in osteoblasts treated with the lysyl oxidase inhibitor β-aminopropionitrile, which resulted in a loosely packed COL I matrix. Osteoblasts secrete a latent, inactive dimeric ecmFXIIIA form which is activated upon binding to the matrix. Monodansyl cadaverine labeling of TG substrates in the cultures revealed that incorporation of the label occurred at sites where fibronectin co-localized with COL I, indicating that ecmFXIIIA secretion could function to stabilize newly deposited matrix. Our results suggest that FXIIIA is an integral part of the COL I deposition machinery, and also that it is part of the ECM-feedback loop, both of which regulate matrix deposition and osteoblast differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.23040 | DOI Listing |
Braz Oral Res
September 2025
Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, Ribeirão Preto, SP, Brazil.
Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.
View Article and Find Full Text PDFACS Nano
September 2025
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer
Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).
View Article and Find Full Text PDFRegen Biomater
August 2025
Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.
View Article and Find Full Text PDFBone
September 2025
Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, 594-1101, Japan. Electronic address:
Hypophosphatasia (HPP) is caused by inactivating variants of ALPL, the gene encoding tissue non-specific alkaline phosphatase (TNSALP). In order to deepen our understanding of the pathogenic mechanisms of HPP, we herein generated ALPL-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene deletion to an iPS clone derived from a healthy subject. We analyzed two ALPL-KO clones, one ALPL-hetero KO clone, and a control clone isogenic except for ALPL.
View Article and Find Full Text PDF