Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The age-associated decline in tissue function has been attributed to ROS-mediated oxidative damage due to mitochondrial dysfunction. The long-lived Ames dwarf mouse exhibits resistance to oxidative stress, a physiological characteristic of longevity. It is not known, however, whether there are differences in the electron transport chain (ETC) functions in Ames tissues that are associated with their longevity. In these studies we analyzed enzyme activities of ETC complexes, CI-CV and the coupled CI-CII and CII-CIII activities of mitochondria from several tissues of young, middle aged and old Ames dwarf mice and their corresponding wild type controls to identify potential mitochondrial prolongevity functions. Our studies indicate that post-mitotic heart and skeletal muscle from Ames and wild-type mice show similar changes in ETC complex activities with aging, with the exception of complex IV. Furthermore, the kidney, a slowly proliferating tissue, shows dramatic differences in ETC functions unique to the Ames mice. Our data show that there are tissue specific mitochondrial functions that are characteristic of certain tissues of the long-lived Ames mouse. We propose that this may be a factor in the determination of extended lifespan of dwarf mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184977PMC
http://dx.doi.org/10.18632/aging.100357DOI Listing

Publication Analysis

Top Keywords

long-lived ames
12
ames dwarf
12
dwarf mice
12
electron transport
8
transport chain
8
chain functions
8
ames
7
functions
5
mice
5
mitochondrial
4

Similar Publications

Symmetry-protected topological phases cannot be described by any local order parameter and are beyond the conventional symmetry-breaking model. They are characterized by topological boundary modes that remain stable under symmetry respecting perturbations. In clean, gapped systems without disorder, the stability of these edge modes is restricted to the zero-temperature manifold; at finite temperatures, interactions with mobile thermal excitations lead to their decay.

View Article and Find Full Text PDF

We demonstrate the growth of size-controlled, high optical quality Zintl-phase BaCdP colloidal quantum dots (QDs), an emerging semiconductor absorbing/emitting in the red and predicted to have favorable defect chemistry. The QDs are grown via hot injection of a phosphorus precursor into a solution of solubilized Ba and Cd precursors. The absorbance and photoluminescence (PL) are tunable via growth temperature and show a bandgap ranging from 1.

View Article and Find Full Text PDF

Delayed onset of ocean acidification in the Gulf of Maine.

Sci Rep

January 2025

Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, 20013, USA.

The Gulf of Maine holds significant ecological and economic value for fisheries and communities in north-eastern North America. However, there is apprehension regarding its vulnerability to the effects of increasing atmospheric CO. Substantial recent warming and the inflow of low alkalinity waters into the Gulf of Maine have raised concerns about the impact of ocean acidification on resident marine calcifiers (e.

View Article and Find Full Text PDF
Article Synopsis
  • - The ATLAS experiment at the LHC conducted a search for long-lived particles (LLPs) using a large dataset (140 fb^{-1}) from proton-proton collisions at 13 TeV, focusing on LLPs with masses from 5 to 55 GeV that decay within the inner detector.
  • - The study considered scenarios where LLPs are produced from exotic Higgs boson decays and models involving axionlike particles (ALPs).
  • - No significant findings above expected background levels were detected, leading to the establishment of upper limits on various production rates involving the Higgs boson and the top quark related to LLPs and ALPs.
View Article and Find Full Text PDF

With limited therapies and vaccines available, human respiratory syncytial virus (HRSV) has a significant negative health impact on all age groups but particularly on infants, young children, and older adults. Bovine respiratory syncytial virus (BRSV) is pathogenically and antigenically similar to HRSV. Building upon previous studies using a BRSV nanovaccine coencapsulating multiple proteins, this work demonstrates the development and comparative evaluation of a coencapsulated nanovaccine to a cocktail nanovaccine formulation composed of polyanhydride nanoparticles encapsulating BRSV postfusion (F) glycoprotein and CpG ODN 1668 coadjuvant delivered simultaneously with nanoparticles encapsulating BRSV attachment glycoprotein (G) and CpG ODN 1668.

View Article and Find Full Text PDF