Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kidney podocytes are highly differentiated epithelial cells that form interdigitating foot processes with bridging slit diaphragms (SDs) that regulate renal ultrafiltration. Podocyte injury results in proteinuric kidney disease, and genetic deletion of SD-associated CD2-associated protein (CD2AP) leads to progressive renal failure in mice and humans. Here, we have shown that CD2AP regulates the TGF-β1-dependent translocation of dendrin from the SD to the nucleus. Nuclear dendrin acted as a transcription factor to promote expression of cytosolic cathepsin L (CatL). CatL proteolyzed the regulatory GTPase dynamin and the actin-associated adapter synaptopodin, leading to a reorganization of the podocyte microfilament system and consequent proteinuria. CD2AP itself was proteolyzed by CatL, promoting sustained expression of the protease during podocyte injury, and in turn increasing the apoptotic susceptibility of podocytes to TGF-β1. Our study identifies CD2AP as the gatekeeper of the podocyte TGF-β response through its regulation of CatL expression and defines a molecular mechanism underlying proteinuric kidney disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195478PMC
http://dx.doi.org/10.1172/JCI58552DOI Listing

Publication Analysis

Top Keywords

podocyte injury
8
proteinuric kidney
8
kidney disease
8
cd2ap
5
cd2ap mouse
4
mouse human
4
human podocytes
4
podocytes controls
4
controls proteolytic
4
proteolytic program
4

Similar Publications

Diabetic nephropathy (DN) is a major cause of end-stage renal disease, with podocyte injury representing an early pathogenic event. Conventional biomarkers such as albuminuria and eGFR identify renal damage only at advanced stages, limiting opportunities for timely intervention. Wilms' Tumor 1 (WT1), a podocyte-specific transcription factor, has emerged as a sensitive marker of early glomerular stress.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.

View Article and Find Full Text PDF

This case report describes a 38-year-old female patient with type 1 diabetes who developed collapsing-type glomerulonephritis (CTGN), a rare but severe kidney injury. The patient presented with nephrotic syndrome symptoms, including edema and hypertension. Laboratory tests showed significant proteinuria with normal serum creatinine and glomerular filtration rate.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) involves oxidative stress-driven damage to glomeruli (Gloms) and proximal convoluted tubules (PCT). NAD(P)H: quinone oxidoreductase 1 (NQO1) regulates redox balance, but its compartment-specific role remains unclear. Streptozotocin (STZ)-induced hyperglycemia increased albuminuria and foot process effacement, with NQO1 KO (NKO) mice exhibiting greater podocyte injury than WT, indicating exacerbated glomerular damage.

View Article and Find Full Text PDF

Evolutionary medicine of emunctory functions of the kidney: an empirical review.

Evol Med Public Health

August 2025

Department of Pediatrics, University of Virginia, Charlottesville, VA, USA.

Primitive emunctory functions to expel harmful substances from cells and the interstitial space of multicellular organisms evolved over the past billion and a half years into the complex physiology of the metanephric kidney. Integrative biology allows empirical testing of hypotheses of the origins of renal structures from homologous single-celled precursors. Emunctory cell complexes called nephridia evolved in metazoan (cnidarian) ancestors 750 million years ago (mya).

View Article and Find Full Text PDF