Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Several hurdles must be overcome in order to achieve efficient and safe immunotherapy against conformational neurodegenerative diseases. In prion diseases, the main difficulty is that the prion protein is tolerated as a self protein, which prevents powerful immune responses. Passive antibody therapy is effective only during early, asymptomatic disease, well before diagnosis is made. If efficient immunotherapy of prion diseases is to be achieved, it is crucial to understand precisely how immune tolerance against the prion protein can be overcome and which effector pathways may delay disease progression. To this end, we generated a transgenic mouse that expresses the ß-chain of a T cell receptor recognizing a PrP epitope presented by the class II major histocompatibility complex. The fact that the constraint is applied to only one TCR chain allows adaptation of the other chain according to the presence or absence of tolerogenic PrP. We first show that transgene-bearing T cells, pairing with rearranged α-chains conferring anti-PrP specificity, are systematically eliminated during ontogeny in PrP+ mice, suggesting that precursors with good functional avidity are rare in a normal individual. Second, we show that transgene-bearing T cells with anti-PrP specificity are not suppressed when transferred into PrP+ recipients and proliferate more extensively in a prion-infected host. Finally, such T cells provide protection through a cell-mediated pathway involving IL-4 production. These findings support the idea that cell-mediated immunity in neurodegenerative conditions may not be necessarily detrimental and may even contribute, when properly controlled, to the resolution of pathological processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164648PMC
http://dx.doi.org/10.1371/journal.ppat.1002216DOI Listing

Publication Analysis

Top Keywords

prion diseases
8
prion protein
8
transgene-bearing cells
8
anti-prp specificity
8
th2-polarised prp-specific
4
prp-specific transgenic
4
transgenic t-cells
4
t-cells confer
4
confer partial
4
partial protection
4

Similar Publications

Emerging roles for innate and adaptive immunity in tauopathies.

Cell Rep

September 2025

Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Brain Immunology and Glia Graduate Training Program, University of Virginia, Charlott

Tauopathies encompass a large majority of dementia diagnoses and are characterized by toxic neuronal or glial inclusions of the microtubule-associated protein tau. Tau has a high propensity to induce prion-like spreading throughout the brain via a variety of mechanisms, making tauopathy a rapid and lethal form of neurodegeneration that currently lacks an effective therapy or cure. Tau aggregation and neuronal loss associated with this pathology are accompanied by robust neuroinflammation.

View Article and Find Full Text PDF

Cellular prion protein (PrP) is a glycoprotein tethered to the plasma membrane via a GPI-anchor, and it plays a crucial role in prion diseases by undergoing conformational change to PrP. To generate a knock-in (KI) mouse model expressing bank vole PrP (BVPrP), a KI targeting construct was designed. However, a Prnp gene sequence that encodes PrP lacking seven C-terminal amino acid residues of the GPI-anchoring signal sequence (GPI-SS) was unintentionally introduced into the construct.

View Article and Find Full Text PDF

TDP-43 is a nuclear protein encoded by the TARDBP gene, which forms pathological aggregates in various neurodegenerative diseases, collectively known as TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These diseases are characterized by multiple pathological mechanisms, with disruptions in lipid regulatory pathways emerging as a critical factor. However, the role of TDP-43 in the regulation of the brain lipid homeostasis and the potential connection of TDP-43 dysfunction to myelin alterations in TDP-43 proteionopathies remain poorly understood, despite the fact that lipids, particularly cholesterol, comprise nearly 70% of myelin.

View Article and Find Full Text PDF

Prion diseases are rare neurodegenerative disorders that share misfolding of the normal cellular prion protein into disease-causing isoforms known as "prions" as the critical pathophysiological event. Definite diagnosis can only be achieved through neuropathological confirmation. The neuropathological features of prion disease are well described; however, some molecular subtypes are typified by characteristic neuropathological features that are subtle or absent.

View Article and Find Full Text PDF

Genetic mutations affecting proteasome function can result in multi-organ diseases, such as Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. Neurological symptoms associated with CANDLE suggest that proteasomal mutations may impact neuronal development and/or function. We generated cerebral organoids (COs) from CANDLE patient induced pluripotent stem cells (iPSCs), which exhibited impaired neuronal development when compared to COs from healthy control iPSCs.

View Article and Find Full Text PDF