98%
921
2 minutes
20
Calpain is an intracellular Ca(2+)-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02). Recent expansion of sequence data across the species definitively shows that calpain has been present throughout evolution; calpains are found in almost all eukaryotes and some bacteria, but not in archaebacteria. Fifteen genes within the human genome encode a calpain-like protease domain. Interestingly, some human calpains, particularly those with non-classical domain structures, are very similar to calpain homologs identified in evolutionarily distant organisms. Three-dimensional structural analyses have helped to identify calpain's unique mechanism of activation; the calpain protease domain comprises two core domains that fuse to form a functional protease only when bound to Ca(2+)via well-conserved amino acids. This finding highlights the mechanistic characteristics shared by the numerous calpain homologs, despite the fact that they have divergent domain structures. In other words, calpains function through the same mechanism but are regulated independently. This article reviews the recent progress in calpain research, focusing on those studies that have helped to elucidate its mechanism of action. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2011.08.005 | DOI Listing |
Acta Crystallogr D Struct Biol
October 2025
Turkish Accelerator and Radiation Laboratory, 06830 Ankara, Türkiye.
Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography.
View Article and Find Full Text PDFACS Synth Biol
September 2025
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation.
African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan. Electronic address:
Dipeptidyl-peptidase (DPP)-IV inhibition by penultimate N-terminus Pro-containing peptides is a promising strategy for Type 2 diabetes (T2D) management, as it prevents the degradation of incretin hormones (DPP-IV substrates) like glucagon-like peptide-1 (GLP-1), thereby prolonging their half-life. However, the stability and bio-accessibility of these peptides are crucial to their efficacy in orally administered therapeutics. We previously identified LPCL and TPFLPDE peptides from tilapia viscera by-products hydrolysates, which exhibited significant DPP-IV inhibition in vitro and in situ while effectively preserving active GLP-1 levels after 2 h treatment in STC-1 cells under basal glucose conditions.
View Article and Find Full Text PDFJ Mol Histol
September 2025
Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, China.
Numerous people experiencing acute myocardial infarction are also experiencing myocardial ischemia-reperfusion injury (MIRI). Pyroptosis is a core mechanism in MIRI. Tongxinluo (TXL) has a significant protective effect on endothelial cell function.
View Article and Find Full Text PDFInt Microbiol
September 2025
Department of Microbiology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Biofilm formation and other virulence phenotypes under quorum sensing regulation play a vital role in the pathogenicity of Aeromonas hydrophila, triggering the emergence of multi-drug resistance (MDR) which increases fish mortality, environmental issues, and economic loss in aquaculture, necessitating the discovery of novel drugs to bypass standard antibiotics. Here, quorum quenching (QQ) may be a sustainable anti-virulent approach. β-Lactamase enzyme obtained from Chromohalobacter sp.
View Article and Find Full Text PDF