Epigenetic epidemiology: the rebirth of soft inheritance.

Ann Nutr Metab

Institute of Developmental Sciences, University of Southampton, Southampton, UK.

Published: December 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-communicable diseases (NCDs), such as cardiovascular disease and type 2 diabetes, constitute the main cause of death worldwide. Eighty percent of these deaths occur in low- and middle-income countries, especially as these countries undergo socio-economic improvement following reductions in the burden of infectious disease. The World Health Organization predicts a substantial increase in the incidence of NCDs over the next decade globally. NCDs are generally preventable, but current approaches are clearly inadequate. New initiatives are needed to implement such prevention, and there needs to be greater recognition that early-life interventions are likely to be the most efficacious. Devising appropriate prevention strategies necessitates an understanding of how the developmental environment influences risk. Progress in this field has been slow due to an excessive emphasis on fixed genomic variations (hard inheritance) as the major determinants of disease susceptibility. However, new evidence demonstrates the much greater importance of early-life developmental factors, involving epigenetic processes and 'soft' inheritance in modulating an individual's vulnerability to NCD. This also offers opportunities for novel epigenetic biomarkers of risk or interventions targeting epigenetic pathways to be devised for use in early life. This may pave the way to much more effective, customised interventions to promote health across the life course.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000328033DOI Listing

Publication Analysis

Top Keywords

epigenetic
4
epigenetic epidemiology
4
epidemiology rebirth
4
rebirth soft
4
soft inheritance
4
inheritance non-communicable
4
non-communicable diseases
4
diseases ncds
4
ncds cardiovascular
4
cardiovascular disease
4

Similar Publications

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Single-cell transcriptome combined with genetic tracing reveals a roadmap of fibrosis formation during proliferative vitreoretinopathy.

Proc Natl Acad Sci U S A

September 2025

Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical Univer

Ocular fibrosis, a severe consequence of excessive retinal wound healing, can lead to vision loss following retinal injury. Proliferative vitreoretinopathy (PVR), a common form of ocular fibrosis, is a major cause of blindness, characterized by the formation of extensive fibrous proliferative membranes. Understanding the cellular origins of PVR-associated fibroblasts (PAFs) is essential to decipher the mechanisms of ocular wound healing.

View Article and Find Full Text PDF

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF

Multiple myeloma (MM) continues to be an incurable malignancy, even with recent therapeutic advancements. While epigenetic dysregulation at cis-regulatory elements is known to drive disease progression, the complete molecular mechanisms underlying these alterations are poorly understood. Using ATAC-seq analysis combined with computational footprinting of CD138+ cells from 55 MM patients, we depicted the dynamic changes in chromatin accessibility during disease progression and identified Nuclear Respiratory Factor 1 (NRF1) as a master regulator of vital MM survival pathways.

View Article and Find Full Text PDF