98%
921
2 minutes
20
• Rising CO₂ concentrations and the associated global warming are expected to have large impacts on high-elevation ecosystems, yet long-term multifactor experiments in these environments are rare. • We investigated how growth of dominant dwarf shrub species (Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum) and community composition in the understorey of larch and pine trees responded to 9 yr of CO₂ enrichment and 3 yr of soil warming at the treeline in the Swiss Alps. • Vaccinium myrtillus was the only species that showed a clear positive effect of CO₂ on growth, with no decline over time in the annual shoot growth response. Soil warming stimulated V. myrtillus growth even more than elevated CO₂ and was accompanied by increased plant-available soil nitrogen (N) and leaf N concentrations. Growth of Vaccinium gaultherioides and E. hermaphroditum was not influenced by warming. Vascular plant species richness declined in elevated CO₂ plots with larch, while the number of moss and lichen species decreased under warming. • Ongoing environmental change could lead to less diverse plant communities and increased dominance of the particularly responsive V. myrtillus in the studied alpine treeline. These changes are the consequence of independent CO₂ and soil warming effects, a result that should facilitate predictive modelling approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2011.03722.x | DOI Listing |
Sci Total Environ
September 2025
European Commission, Joint Research Centre (JRC), Ispra, Italy. Electronic address:
Drought stress has profound impacts on ecosystems and societies, particularly in the context of climate change. Traditional drought indicators, which often rely on integrated water budget anomalies at various time scales, provide valuable insights but often fail to deliver clear, real-time assessments of vegetation stress. This study introduces the Cooling Efficiency Factor Index (CEFI), a novel metric purely derived from geostationary satellite observations, to detect vegetation drought stress by analyzing daytime surface warming anomalies.
View Article and Find Full Text PDFOecologia
September 2025
Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Instituto de Biociencias de La Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), 9000, Comodoro Rivadavia, Argentina.
Under the scenario of global warming, the response of carbon (C) fluxes of arid and semi-arid ecosystems, is still not well understood. A field warming experiment using open top chambers (OTCs) was conducted in a shrub-grass patagonian steppe to evaluate the effects on bare soil respiration (R), and ecosystem respiration (R), gross primary productivity (GPP) and net C exchange (NEE) during the growing season. Air (T) and soil (T) temperature, and soil available phosphorus changed significantly while there were no changes in soil moisture, soil organic carbon, total soil nitrogen and root biomass, after one-year of treatment.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, Gottingen, Germany.
The activation energy (E) is the minimum energy necessary for (bio)chemical reactions acting as an energy barrier and defining reaction rates, for example, organic matter transformations in soil. Based on the E database of (i) oxidative and hydrolytic enzyme activities, (ii) organic matter mineralization and CO production, (iii) heat release during soil incubation, as well as (iv) thermal oxidation of soil organic matter (SOM), we assess the E of SOM transformation processes. After a short description of the four approaches to assess these E values-all based on the Arrhenius equation-we present the E of chemical oxidation (79 kJ mol, based on thermal oxidation), microbial mineralization (67 kJ mol, CO production), microbial decomposition (40 kJ mol, heat release), and enzyme-catalyzed hydrolysis of polymers and cleavage of mineral ions of nutrients (33 kJ mol, enzyme driven reactions) from SOM.
View Article and Find Full Text PDFTalanta
August 2025
Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, Rome, Italy; Sense4Med srl, via Bitonto 139, Rome, Italy. Electronic address:
Studying chemical substances in Antarctic soils, such as zinc ions, provides crucial insight into ecosystem changes. Conventional analyses typically require laboratory-based instrumentation (e.g.
View Article and Find Full Text PDFSci Adv
September 2025
Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA.
Year-to-year variance of agricultural productivity is an important determinant of food security. Previous global analyses described increased yield volatility from warming, but it has become increasingly clear that changes in water availability are also a key determinant of yields. Here, we provide the first global quantification of climate change impacts on maize, soybean, and sorghum yield variance due to changes in temperature and soil moisture.
View Article and Find Full Text PDF