Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Nanomagnets with metal cores have recently been shown to be promising candidates for magnetic drug delivery due to higher magnetic moments compared with commonly used metal oxides. Successful application strongly relies on a safe implementation that goes along with detailed knowledge of interactions and effects that nanomagnets might impart once entering the body.

Materials & Methods: In this work, we put a particular focus on the interactions of ultra-strong metal nanomagnets (≥ three-times higher in magnetization compared with oxide nanoparticles) within the vascular compartment. Individual aspects of possible effects are addressed, including interactions with the coagulation cascade, the complement system, phagocytes and toxic or inflammatory reactions both by blood and endothelial cells in response to nanomagnet exposure.

Results: We show that carbon-coated metal nanomagnets are well-tolerated by cells of the vascular compartment and have only minor effects on blood coagulation.

Conclusion: These findings provide the fundament to initiate successful first in vivo evaluations opening metal nanomagnets with improved magnetic properties to fascinating applications in nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.11.33DOI Listing

Publication Analysis

Top Keywords

vascular compartment
12
metal nanomagnets
12
magnetic drug
8
nanomagnets
5
metal
5
iron core/shell
4
core/shell nanoparticles
4
magnetic
4
nanoparticles magnetic
4
drug carriers
4

Similar Publications

We present a rare anatomical variation of the deep femoral vein (DFV) originating from the popliteal vein (PV) with an associated aneurysm. The DFV arose from the PV at the adductor hiatus, exhibited an aneurysm, and coursed upward through the fourth osseo-aponeurotic opening of the adductor magnus muscle to enter the anterior thigh compartment before draining into the femoral vein. This unique variation likely resulted from developmental deviations during intrauterine life.

View Article and Find Full Text PDF

Acute extremity compartment syndrome (CS) is a serious medical complication triggered by factors such as trauma, vascular injury, or prolonged compression, resulting in elevated intracompartmental pressure (ICP) and tissue ischemia. Diagnosis remains challenging, mainly relying on the subjective evaluation of clinical symptoms. Different animal models have been used to study pathophysiology and evaluate diagnostic and therapeutic approaches.

View Article and Find Full Text PDF

Introduction: Abdominal compartment syndrome (ACS) is a serious complication that can occur after endovascular aneurysm repair (EVAR) for ruptured abdominal aortic aneurysm (rAAA). Prompt recognition and appropriate management are crucial to improve patient outcomes.

Case Presentation: An octogenarian with an 11-cm rAAA underwent emergent EVAR due to cardiovascular instability.

View Article and Find Full Text PDF

Role of hydrogen sulfide in catalyzing the formation of NO-ferroheme.

Nitric Oxide

September 2025

Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC, 27109, USA. Electronic address:

We recently demonstrated a rapid reaction between labile ferric heme and nitric oxide (NO) in the presence of reduced glutathione (GSH) or other small thiols in a process called thiol-catalyzed reductive nitrosylation, yielding a novel signaling molecule, labile nitrosyl ferrous heme (NO-ferroheme), which we and others have shown can regulate vasodilation and platelet homeostasis. Red blood cells (RBCs) contain high concentrations of GSH, and NO can be generated in the RBC via nitrite reduction and/or RBC endothelial nitric oxide synthase (eNOS) so that NO-ferroheme could, in principle, be formed in the RBC. NO-ferroheme may also form in other cells and compartments, including in plasma, where another small and reactive thiol species, hydrogen sulfide (HS/HS), is also present and may catalyze NO-ferroheme formation akin to GSH.

View Article and Find Full Text PDF

Multivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques. Since fMRI is based on measuring the hemodynamic response following neural activation, the spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular compartments that drain the signal from the actual location of neural activation, making it challenging to image cortical structures at the spatial scale of cortical columns and layers. By relying on information from multiple voxels, MVPA has shown promising results in retrieving information encoded in fine-grained spatial patterns.

View Article and Find Full Text PDF