Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: One of the major obstacles of the clinical translation of (18)F-labeled arginine-glycine-aspartic acid (RGD) peptides has been the laborious multistep radiosynthesis. In order to facilitate the application of RGD-based positron emission tomography (PET) probes in the clinical setting we investigated in this study the feasibility of using the chelation reaction between Al(18)F and a macrocyclic chelator-conjugated dimeric RGD peptide as a simple one-step (18)F labeling strategy for development of a PET probe for tumor angiogenesis imaging.
Methods: Dimeric cyclic peptide E[c(RGDyK)](2) (RGD(2)) was first conjugated with a macrocyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), and the resulting bioconjugate NOTA-RGD(2) was then radiofluorinated via Al(18)F intermediate to synthesize (18)F-AlF-NOTA-RGD(2). Integrin binding affinities of the peptides were assessed by a U87MG cell-based receptor binding assay using (125)I-echistatin as the radioligand. The tumor targeting efficacy and in vivo profile of (18)F-AlF-NOTA-RGD(2) were further evaluated in a subcutaneous U87MG glioblastoma xenograft model by microPET and biodistribution.
Results: NOTA-RGD(2) was successfully (18)F-fluorinated with good yield within 40 min using the Al(18)F intermediate. The IC(50) of (19)F-AlF-NOTA-RGD(2) was determined to be 46 ± 4.4 nM. Quantitative microPET studies demonstrated that (18)F-AlF-NOTA-RGD(2) showed high tumor uptake, fast clearance from the body, and good tumor to normal organ ratios.
Conclusion: NOTA-RGD(2) bioconjugate has been successfully prepared and labeled with Al(18)F in one single step of radiosynthesis. The favorable in vivo performance and the short radiosynthetic route of (18)F-AlF-NOTA-RGD(2) warrant further optimization of the probe and the radiofluorination strategy to accelerate the clinical translation of (18)F-labeled RGD peptides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216177 | PMC |
http://dx.doi.org/10.1007/s00259-011-1847-4 | DOI Listing |