Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors.

Methods: Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by in situ hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM).

Results: In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and NeuroD immunoreactive cells in the subgranular zone of the dentate gyrus, and a marked reduction in the number of 5-bromo-2'-deoxyuridine (BrdU) positive progenitors. Furthermore, a significant and profound reduction in BDNF mRNA was seen in the BTBR dentate gyrus. No significant differences were seen in the expression of AchE, mossy fiber synapses or immunoreactivities of microtubule-associated protein MAP2, parvalbumin and glutamate decarboxylase GAD65 or GAD67 isoforms.

Conclusions: We documented modest and selective alterations in glia, neurons and synapses in BTBR forebrain, along with reduced neurogenesis in the adult hippocampus. Of all markers examined, the most distinctive changes were seen in the neurodevelopmental proteins NG2, PSA-NCAM, NeuroD and DCX. Our results are consistent with aberrant development of the nervous system in BTBR mice, and may reveal novel substrates to link callosal abnormalities and autistic behaviors. The changes that we observed in the BTBR mice suggest potential novel therapeutic strategies for intervention in autism spectrum disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135520PMC
http://dx.doi.org/10.1186/2040-2392-2-7DOI Listing

Publication Analysis

Top Keywords

btbr mice
12
btbr
11
btbr mouse
8
changes neurodevelopmental
8
neurodevelopmental proteins
8
corpus callosum
8
molecular cellular
8
neurons synapses
8
bdnf mrna
8
reduced neurogenesis
8

Similar Publications

The gut commensal attenuates indole-AhR signaling and restores ASD-like behaviors with BTBR mice.

Front Microbiol

August 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Autism spectrum disorders (ASD), a group of neurodevelopmental disorders characterized by the core symptoms of impaired social communication and stereotyped behaviors, is strongly associated with dysregulated microbiota-gut-brain axis. Emerging evidence suggests that , which showed reduced abundance in ASD cohorts, holds therapeutic potential, though its interaction with host remain unexplored. Here, we investigated the efficacy and molecular basis of 4P-15 (4P-15) in BTBR /J (BTBR) mice, an idiopathic ASD mouse model.

View Article and Find Full Text PDF

Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder.

Genes (Basel)

July 2025

Medical Genetics and Genomics-Pediatrics, Physiology & Biophysics, Founding Director Center for Autism Research and Translation, University of California, Irvine, CA 92697, USA.

: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in ASD, as recently highlighted by insights from the BTBR mouse model of ASD. The rapid brain expansion taking place as evolved, particularly in the parietal lobe, led to increased energy demands, making the brain vulnerable to such metabolic disruptions as are seen in ASD. : Mitochondrial dysfunction in ASD is characterized by impaired oxidative phosphorylation, elevated lactate and alanine levels, carnitine deficiency, abnormal reactive oxygen species (ROS), and altered calcium homeostasis.

View Article and Find Full Text PDF

Oxytocin (OXT) neurons in the paraventricular nucleus of the hypothalamus (PVN), which send projections to the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BnST), are implicated in regulation of prosocial-emotional behaviours and abnormalities resembling autism spectrum disorders (ASD). Compared with standard C57BL6J (B6) mice, BTBR mice, a behaviour-based ASD model, exhibited decreased densities of OXT neurons and attenuated OXT neuronal responses to a social encounter. OXT receptor mRNA expressions in the MeA and BnST as a response to a social encounter were blunted in BTBR mice.

View Article and Find Full Text PDF

Autism Spectrum Disorders (ASD) are complex neurodevelopmental conditions with a multifactorial etiology, where genetic and environmental interactions lead to cellular dysfunctions in the brain and peripheral tissues, associated with dysbiosis, inflammation, oxidative stress, and mitochondrial impairment. Emerging evidence highlights the critical role of the gut microbiota in the metabolic and neuroinflammatory imbalances observed in ASD. In this context, the liver plays a pivotal metabolic role, being closely connected to the gut and brain through metabolic pathways, influencing overall health.

View Article and Find Full Text PDF

: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder of uncertain etiology. Current studies suggest that ASD progression is closely linked to an imbalance between oxidative stress and antioxidant capacity, marked by elevated levels of reactive oxygen species (ROS) and reduced concentrations of antioxidant molecules such as superoxide dismutase (SOD) and glutathione (GSH). Although the human body does possess endogenous ROS-scavenging enzymes, their sensitivity to environmental conditions and the difficulties of large-scale production limit their practical application.

View Article and Find Full Text PDF