Genomic selection identifies vertebrate transcription factor Fezf2 binding sites and target genes.

J Biol Chem

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA.

Published: May 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identification of transcription factor targets is critical to understanding gene regulatory networks. Here, we uncover transcription factor binding sites and target genes employing systematic evolution of ligands by exponential enrichment (SELEX). Instead of selecting randomly synthesized DNA oligonucleotides as in most SELEX studies, we utilized zebrafish genomic DNA to isolate fragments bound by Fezf2, an evolutionarily conserved gene critical for vertebrate forebrain development. This is, to our knowledge, the first time that SELEX is applied to a vertebrate genome. Computational analysis of bound genomic fragments predicted a core consensus binding site, which identified response elements that mediated Fezf2-dependent transcription both in vitro and in vivo. Fezf2-bound fragments were enriched for conserved sequences. Surprisingly, ∼20% of these fragments overlapped well annotated protein-coding exons. Through loss of function, gain of function, and chromatin immunoprecipitation, we further identified and validated eomesa/tbr2 and lhx2b as biologically relevant target genes of Fezf2. Mutations in eomesa/tbr2 cause microcephaly in humans, whereas lhx2b is a critical regulator of cell fate and axonal targeting in the developing forebrain. These results demonstrate the feasibility of employing genomic SELEX to identify vertebrate transcription factor binding sites and target genes and reveal Fezf2 as a transcription activator and a candidate for evaluation in human microcephaly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099680PMC
http://dx.doi.org/10.1074/jbc.M111.236471DOI Listing

Publication Analysis

Top Keywords

transcription factor
16
target genes
16
binding sites
12
sites target
12
vertebrate transcription
8
factor binding
8
transcription
6
genomic
4
genomic selection
4
selection identifies
4

Similar Publications

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF

Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.

Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.

View Article and Find Full Text PDF

Abnormal expression of HLA class Ib, MICA and MICB molecules is associated with the evolution of pathological conditions and clinical settings. Here, we use RNA-sequencing data from two publicly-available projects, from different human organs and tissues and at single-cell level, to present their transcriptional expression throughout the human body, in comparison to that of HLA class Ia, HLA class II, their costimulatory molecules, and the main HLA transcription factors. Our analyses for 21 target genes reveal that median gene expression differs by orders of magnitude and that the classical/non-classical HLA distinction is not absolute for overall expression.

View Article and Find Full Text PDF

The second messenger signaling molecule cyclic di-AMP drives developmental cycle progression in .

Elife

September 2025

Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, United States.

The obligate intracellular bacterium alternates between two functional forms during its developmental cycle: elementary body (EB) and reticulate body (RB). However, the molecular mechanisms governing the transitions between these forms are unknown. Here, we present evidence that cyclic di-AMP (c-di-AMP) is a key factor in triggering the transition from RB to EB (i.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.

View Article and Find Full Text PDF